气象资讯网

您现在的位置是: 首页 > 生活指数

文章内容

全要素气象检测器_气象要素监测设备

tamoadmin 2024-08-28
1.卫星地图的常识2.如何提高新时期决策气象服务质量3.选址阶段环境背景调查与监测4.053H2G型护卫舰的设计特点5.激光跟踪仪的性能6.科技发展:利大还是弊

1.卫星地图的常识

2.如何提高新时期决策气象服务质量

3.选址阶段环境背景调查与监测

4.053H2G型护卫舰的设计特点

5.激光跟踪仪的性能

6.科技发展:利大还是弊大?(作文)

7.南极资料

全要素气象检测器_气象要素监测设备

1>本文是针对煤田复杂煤岩地层,为了减少发生钻具折断、烧钻、掉钻头、跑钻、岩芯挤夹、钻孔掉块、坍塌等钻探事故,笔者总结了煤田地质钻探的质量控制措施。

1钻探施工原则

煤田综合地质钻探必须有严密的施工组织和统一协调的指挥,各种施工原则和顺序严格把握并落到实处,才能达到综合钻探技术经济合理的目的。施工严格遵循以下原则:(1)先施工基本工程、后施工加密工程;1-2km地震网,控制全区总体构造形态;500-1O00m地震网结合1-2km钻探区控制确定初期区范围,并可作为初步设计的依据。(2)先疏后密、循序渐进。这是规范规定的施工原则。设计和施工过程中,将各勘探工程按此原则划分为若干期施工,每期工程后,需提交相应的中间资料,以此优化调整后期工程,总体推进整个项目的完成。(3)钻孔在地震测线上施工。使每个钻孔充分发挥一孔多用的作用。因地面影响不能施工时,移动孔位需经项目组重新研究确定。

2 强化施工质量管理体系

在煤田地质钻探中,我们严格按照原煤炭部颁发的《煤田地质钻探规程》、《煤田勘探钻孔工程质量标准》、《煤田地球物理测井规程》、《煤炭地质勘探抽水试验规程》及全国矿产储量委员会颁发的《煤炭地质勘探规范》执行。具体做法是:钻孔设计由技术方下达后,必须由业主、设计部门、施工方、监理审核后签字,设计方可生效。开工必须填写开工通知书,经业主、监理、技术方、施工方验收钻探设施、机械设备、材料供应、场地设施并在开工通知书上签字后方可开工。杜绝不具备开工条件而硬性施工的现象,同时又避免了工程前期质量没有保证的弊病。

3 冲洗质量控制

(1)松散破碎地层:由于在此地层主要用大径钻具钻进,增加冲洗液冲孔时的过流断面,减少液流阻力以及冲洗液的压力激动而引起孔壁破坏;同时,用优质低固相冲洗液保护孔壁,冲洗液各项指标以控制在下列范围为官:黏度18-25 S,比重1.05-1.15,失水量每30min小于15 ml,泥皮厚度小于1 mm,含砂量小于4%,pH值8-9。(2)水敏性地层:此类地层主要是用钻进冲洗液护孔,冲洗液的滤液性能和泥皮质量(或孔壁网状膜结构强度)是影响孔壁稳定的关键因素。因此,控制钻井液失水量,增强泥皮强度或冲洗液在孔壁所形成的高分子网状结构“胶膜”强度,减少冲洗液中自由水的含量,降低滤液对岩石的渗透水化和提高滤液对岩石的胶结力是至荚重要的。冲洗液性能为:失水量小于10mL,泥皮厚小于l0inn。(3)漏、涌水地层:这类地层在煤田施工中难度是最大的。根据岩石结构与长期施工经验,煤系地层的漏失大多由于裂隙漏失和含水量水层层位漏失与松散破碎孔隙产生的长孔段漏失。在现阶段,胶结堵塞法比较适用于较小的涌水地层。主要配方是浓泥浆中加入质量分数为50X10 的PHP,再加入惰性材料搅拌均匀,随着钻进可逐渐堵塞漏失通道。

4 掏穴作业质量控制

(1)掏穴前应将井内的岩屑冲干净,确保井眼畅通。(2)下入液压割管刀前在井口必须做开刀试验,同时记录水泵的压力,记录当打开刀体到下位时的最大压力数值,注意观察工具开合是否灵活,打开后的直径是否符合设计要求。(3)下钻时要稳、慢,防止刀具碰撞套管或损伤刀刃,一旦遇阻应上提钻具,人工回转钻具后试下放,顺畅后继续下钻,否则起钻通井。(4)工具下放到掏穴井段后先开车慢速回转并试开泵,逐步向孔内增加流量,观察泥浆泵压力是否达到设计值及开车回转时的扭矩。如果扭矩大则减小泵量,这样可以减小刀体的直径,回转阻力变小。(5)铣割玻璃钢套管时,先将钻具下到设计位置后,开车慢速回转,逐步调整好泵量达到刀体最大值时,可以给压钻进实施铣割作业。(7)每掏穴0.5 m,应放慢进尺或停止进尺,加钻孔漏失后,首先向孔底压入麦杆、锯末等材料,然后在把钻具提离孔底,调整泥浆性能,最后开始钻进,边钻进边堵漏,直到深入达到一定标准后,钻孔停止漏失,恢复正常钻进。

5 瓦斯抽放质量控制

瓦斯是与煤炭伴生的优质洁净能源,其主要成分是甲烷(CH4)。瓦斯是一种宝贵的,原始状态的瓦斯赋存于煤层或邻近煤层的岩层中,相对密度比空气小,具有一定的释放压力,在煤矿开过程中,随着煤岩层的移动而释放出来,极易引发瓦斯突出、爆炸、燃烧等恶故,时常引起重特大瓦斯事故的发生,是煤矿安全生产的大敌。井下钻孔瓦斯抽放技术是在井下的巷道中设置钻场,顺煤层或穿煤层进行钻进抽取瓦斯,目前国内煤矿使用的主要方法有:顺层密集长钻孔抽放、网格式穿层钻孔抽放和顶板走向长钻孔抽放邻近煤层瓦斯技术,其中后者是针对高瓦斯无煤柱综或综放工作面的特点,为解决瓦斯超限问题,用沿开层顶板岩层走向布置迎面定向水平长钻孔代替顶板瓦斯巷道抽放上邻近层瓦斯。该抽放方法与顶板岩巷抽放法、顶板穿层短钻孔抽放法相比,技术上和经济上具有显著的优越性。尤其对于掘接续紧张的矿井,其优越性更为突出。

6 其他

6.1 地质与钻探密切配合

各类钻探手段的应用均服从于煤田勘查的地质任务。(1) 钻探人员要了解矿井设计开拓方案及设计、基建与生产部门对地质工作的要求,了解煤田区内地质体的特征、变化规律以及要解决的主要地质任务。据此在资料集、处理及解释阶段作好各项研究分析工作,“需要什么,研究什么”,从获得丰富信息的各类地震时间剖面中提出相应的地质成果。(2)煤层厚度及奥灰顶界深度等资料,用钻探予以验证。对验证中存在的差值,经地质人员综合分析,及时反馈到理论上予以总结与提高,不断地往复,极大地提高地震勘探工作精度,开拓新的应用领域。

6.2 完善钻探效率定额

众所周知,影响钻探效率的原因很多, 并非完全由钻探设备决定。因此, 以钻探设备为依据来确定钻探效率定额, 必然不能对提高钻探效率起促进作用。为了完善钻探效率定额,应将设备与其他影响因素, 以及管理措施统一起来考虑。其他措施还包括注重技术人才培养与使用,加大科研工作力度,解决生产技术难题,做好技术储备;并认真做好科研成果到生产力的转化工作。还要积极投身社会主义市场经济中,发挥煤炭地质单位的比较优势,在钻探延伸业-社会地质、岩土钻掘基础工程施工领域开拓自已的立足之地,走出自己的发展之路。

石化工程的质量管理探讨

摘要:随着我国经济的发展及其对于石油的需求量越来越多,我国的石化建筑工程得到了突飞猛进的发展。但是石油工程施工具有投资相对较高、应用技术的科技含量高、风险性高、安全要求高等特点,其质量要求比一般工程要高得多。因而必须更加重视和加强石化建筑工程施工中的工程质量管理,提高石化建筑工程的施工质量。

关键词:石油;石化工程;质量管理

工程项目的质量管理是设计和施工管理中不可或缺的重要一环,有着极其重要的地位与作用。众所周知,石化工程项目是一个极其复杂的过程,其影响质量的因素很多,如设计、材料、机械、地形、地质、水文、气象、施工工艺、操作方法、技术措施、管理制度等,均直接影响着工程项目的施工质量。那么如何更好地开展石化工程质量管理与质量监督工作,确保工程质量是一个严峻的挑战。

1 石化工程的特点

石油化工项目除具有一般建设项目的共性外,还有其自身鲜明的特点。

1.1 质量要求高

石化工程涉及的专业广泛,建成后的生产装置大多处于高温高压、易燃易爆、有毒有害的苛刻条件下工作,属高危险性项目。建设项目的实现过程工程技术复杂,质量要求高,作业难度大,专业多,设备器材品种繁杂,检验严格,而且技术更新快,影响质量的因素不易掌控。

1.2 技术难点多

石化项目的实现过程技术难点集中体现在大型机组安装、大型储罐和设备制作、大型集散控制系统的组态和调试、大型设备的吊装以及特种材料的焊接等方面。这就要求参与石油化工项目建设的施工单位、设计单位、监理单位和总承包单位等责任主体必须拥有相应的技术和管理能力。

1.3 其他

施工周期长,跨越季节幅度大,地上地下作业,作业区抵御自然气候变化能力差;材料用量大,品种规格多,现场存储量有限,批次进场检验频繁;劳动层工种多,施工过程流水分段,立体交叉,主要工种作业重复递进;传统施工技术和现代施工技术并存,规范、标准具体明确;资金使用量大,周转期长。

2 工程项目施工质量管理的含义

质量管理是GB/T 19000用ISO 9000-2000质量管理体系标准的一个质量术语,是指确立质量方针及实施质量方针的全部职能及工作内容,并对其工作效果进行评价和改进的一系列工。质量管理是一项系统工程.涉及各行业、各部门的各个领域,包含了产品质量、工程质量、服务质量和施工作业质量等,它贯穿于整个生产经营工作之中。就石化工程行业而言,质量管理主要是针对施工质量,其质量管理水平的高低,直接影响着石油化工的效益与发展。质量管理不仅是企业维持正常生产秩序的基础保证,更是石化工程施工活动中一项不可或缺的重要工作,在企业经营管理中占有重要的地位,是不可替代的。

3 创新石化工程质量管理的探讨

3.1 强化工程项目质量管理理念

实行项目质量管理,观念转变是关键,要贯穿于实践过程的始终。唯有当工程项目人员树立起“以满足业主需求为准则,以追求工程建设最优为宗旨,以实现整体效益最大化为目标”的工作理念,石化工程公司才能取得工程项目质量管理的成功。为强化工程项目质量管理理念,可以做好以下几方面工作:第一, 将招标文件、工程原始资料和业主的需求变化作为工程设计管理的根本依据,将向业主提供优质服务作为工程管理的惟一目标。第二,项目人员要充分利用自己的才智,为业主提出可供筛选的多个方案和富有建设性的意见或建议。第三,要坚持用先进适用技术,不懈追求工程设计的精益求精,实现质量与效益的最佳结合。第四,将主动的应变意识、灵敏的开放思维、快捷的反应能力和勇于承担挑战的信念,贯穿于工程设计项目管理的全过程。

3.2 建立质量目标责任制

企业必须层层建立质量保证体系,突出质量否决权,并实行重奖重罚,使职工的切身利益、企业的兴衰和产品质量紧密地联系在一起。该制度由质量检验和工序管理两个方面组成。质量检验包括对原材料、半成品、设备的检验。工序管理主要是建立质量管理点,消化工艺文件,严格工艺规律, 进行工艺分析, 管好人、机、料、法、环境诸因素中的主要要素。在质量保证体系运行中,应强调质量目标责任制,使参加施工的全体人员都有质量保证职责,任何质量工作都有专人管理。严格按照自检、互检、专职检制度,对每一道施工工序进行高标准、高质量的检查和监控。

3.3 积极用科学技术

全面实施质量管理,努力提高施工技术水平是创造优质量工程的重要条件,施工质量控制与技术因素息息相关,技术因素除了人员的技术素质外,还包括装备、信息、检验和检测技术等。科技是第一生产力,体现在施工生产活动的全过程,技术进步的作用,最终体现在产品质量上。为了保证工程质量,应重视新技术、新工艺的先进性和适用性。在施工的全过程中,要建立符合技术要求的工艺流程、质量标准、操作规程,并建立严格的考核制度,不断改进和提高施工技术和工艺水平,以确保工程质量。

3.4 完善质量管理的监控体系

质量体系是为实现质量保证所需的组织结构、程序、过程和。企业按照IS09000标准建立的质量体系要覆盖工程质量形成的全过程并有效运行。企业首先要注重提高各级一把手的质量意识,发挥总工程师和技术负责人的重要作用,建立以经理为第一责任、总工程师全面负责、各级质量、技术管理部门和质量监督部门实施的监管体系,培养一批内审和管理、监督专家队伍。其次是项目管理机构应做到熟悉设计文件,并针对工程特点,施工难度及业主工作要求,配备相应人员,明确工职责,完善项目管理机构的监控体系,制订出具有可操作性和指导性的管理规划和实施细则,订出监控的工作制度、工作程序和措施,配备工程所需的检测设备,为管理工作的展开做好准备。第三是坚持“三检制”和隐蔽验收制度,每个分部、分项工程都严格按照国家工程质量检验评定标准进行质量评定。使施工现场事事、处处、时时、都严格按照质量管理制度和规范、规程办事,确保质量体系覆盖从工程开工到竣工验收的全过程,才能保证项目质量目标的实现。

2.5 实行工程划分

石油化工项目几乎都是庞大的系统工程,它们共同的特点是投资巨大、专业齐全、流程复杂、自动化控制。如果没有一个科学的工程划分。管理起来难免顾此失彼,相反如果工程划分得条理清晰,就可以用分头管理,理连接的方法进行管理,达到事半功倍的效果。譬如:把一个单项工程分为若干个单位工程。由专人分别负责管理,然后找出这些单位工程互相联系和制约的关系,排定出每个单位工程的开工顺序和开竣工日期,把这些单位工程连接起来就基本形成了总体网络。在工程施工阶段,管理者可以轻松地指出不同时期关键工作在哪个单位工程的哪道工序上,时时能突出工作重心。即使工程建设不能顺利进行,也能清晰看出问题所在及由谁负责。便于分清责任和落实整改。同理,条理清晰的工程划分也有利于质量控制和费用控制。

总之,石化工程的质量管理是一个系统工程,由于其产品生产周期长、自然环境影响因素多等特点,决定了质量管理的难度大。为了保证工程质量,我们必须把石化工程的质量管理纳入正规化、标准化中去,必须总结操作经验,在项目的实践中不断摸索前行。。。<2>齿轮箱的润滑油温度信号、油位信号、油流信号都是控制系统的输入信号,控制计算机根据不同的信号触发不同的控制程序,控制程序驱动相关的执行元件执行相关的操作,确保了齿轮箱工作于良好状态。在实际工作中发现由分配器通向各个轴承的强制润滑管被堵塞而致轴承烧死的现象。究其原因可能是油液过脏或过滤器滤芯损坏致脏物进入润滑管所致。建议:齿轮箱用油要使用符合要求的滤油机加入;滤芯要规定检查周期,以防滤芯破损后使脏物堵塞油路而致轴承烧损.

风力发电机组齿轮箱在传动系统中的作用是等功率地将风轮获得的低转速的机械能转变成高转速的机械能,传动系统中的齿轮箱是载荷和转速匹配的中心部件。因此齿轮箱的运行状态和技术参数直接影响到整个机组运行的技术状态。正是由于齿轮箱的技术功能特点,在风力发电机组传动系统中的齿轮箱一般都设计有相应的监控设施,控制系统可以实时地监控其中的轴承温度、润滑油温,润滑系统的油压,润滑油位,并且根据环境条件的不同,配备有润滑油的加热和散热装置,控制系统可以根据润滑油的温度自动地启动散热装置和加热装置,以使齿轮箱尽可能地工作于最佳状态。

1. 齿轮箱的监控系统

齿轮箱的监控系统主要由润滑油温度传感器、润滑系统油流传感器、压力表、润滑油位传感器、散热装置、加热器等设施组成。系统的结构原理可以去看下:

2. 齿轮箱监控系统与主控系统的关系

温度传感器将箱体内的润滑油温度以模拟电压信号的形式发送到控制计算机,控制计算机首先将润滑油温信号和环境温度信号进行处理形成数字控制信号,根据控制信号的不同,计算机将触发不同的控制逻辑,控制逻辑输出相应的控制信号驱动继电器或发出报警信号,继电器的状态决定相应接触器的断开和闭合,接触器的状态直接控制相应执行元件的动作,如散热风扇的启动和停止、加热电阻的接通和断开、自动停机等。

油位传感器根据润滑油位的高低发出一个开关信号,开关信号输入到计算机后触发相应的逻辑模块,判断逻辑根据信号的状态发出报警信号,控制机组自动停机或正常运行。

油流传感器发出的也是一个开关信号,开关信号输入到计算机后触发相应的逻辑模块,判断逻辑根据信号的状态发出报警信号,控制机组自动停机或正常运行。

3. 齿轮箱监控系统运行技术状态的判别

以某种 660kW风力发电机组的齿轮箱监控系统为例,该齿轮箱的润滑系统用了主动润滑方式,对于齿轮来说,属于飞溅润滑和喷淋润滑相结合的混合润滑,对于轴承来说则是强制性润滑。该润滑系统由齿轮泵、散热风扇、过滤器、油流传感器组成,其中的油流传感器用于检测润滑系统油流的状态,在正常工作状态下,该传感器会向控制计算机发出信号,表明润滑系统工作正常,如果润滑系统中过滤器堵塞或油流量不足而使系统的压力降低到一定值时,该压力传感器会立即中断向中心计算机发出的信号,控制计算机检测到该信号中断后,便立即发出报警信号并使机组停止运行。过滤器是油路系统中的另一个功能部件,在正常工作状态下,油流通过进油口进入滤芯外腔,经滤网过滤后进入滤芯内腔出油口;为了在各种状态下保证润滑油的流量,在过滤器中设置了一个旁路阀,目的是在滤网阻塞或气温较低引起润滑油的粘度增加时,打开旁路阀,一部分润滑油经旁路阀直接到达出油口,保证润滑系统有足够的供油量;另外过滤器上还设计了一个极限开关,当油路和滤芯内腔的压力差超过一定限度时,该极限开关便打开以指示滤网太脏,或润滑油粘度太大。

温度控制是齿轮箱运行状态控制的另一个重要组成部份,以某种660kW风力发电机组的齿轮箱系统为例,控制系统实时地对齿轮箱的润滑油温度进行着监控。该温度控制系统有温度传感器、散热装置、加热装置组成。控制系统连续地读取齿轮箱温度传感器发来的温度信号,若环境温度高于15℃或齿轮箱润滑油温高于60℃,则控制系统使加热电阻断电,停止加热;冷却系统的控制原理是,当齿轮箱的温度高于60℃时,则启动散热器风扇,在此状态下即使齿轮箱的润滑油温降到了60℃时以下,散热器风扇也会继续工作一段时间再停止运行;如果控制系统检测到齿轮箱温度超过85℃,则发出报警信号并使机组停止运行,在此状态下应检查加热系统和散热系统是否工作正常,如果加热系统和散热系统工作正常则需检查齿轮的啮合状态和轴承的润滑状态和振动指标。

齿轮箱的油位是保证齿轮箱正常运行的关键要素之一,在某种 660kW的齿轮箱上,除了设计有观察窗外,还设计有一个油位传感器,该传感器在齿轮箱内的油位低于设定值时向控制计算机发出信号,控制系统检测到该信号后立即发出报警信号并使机组停止运行。

4. 结论和建议 齿轮箱的润滑油温度信号、油位信号、油流信号都是控制系统的输入信号,控制计算机根据不同的信号触发不同的控制程序,控制程序驱动相关的执行元件执行相关的操作,确保了齿轮箱工作于良好状态。在实际工作中发现由分配器通向各个轴承的强制润滑管被堵塞而致轴承烧死的现象。究其原因可能是油液过脏或过滤器滤芯损坏致脏物进入润滑管所致。建议:齿轮箱用油要使用符合要求的滤油机加入;滤芯要规定检查周期,以防滤芯破损后使脏物堵塞油路而致轴承烧损.(完)

卫星地图的常识

一个建筑工地安装多少个扬尘监测点要看上级主管部门的要求,一般情况安装一个监测点就可以。

参考资料:

加强扬尘污染治理提高空气质量,已经成为各级、社会各界、人民群众的关注点。建筑工地扬尘噪声在线监测系统主要监测的项目为可吸入颗粒物,并配套监控系统、噪声监控系统、气象系统、数据集系统和通信系统等,与各级环保局污染源监控中心无缝对接,实现互联互通,同时自建云平台及服务器,免费提供给用户自行登录查询、下载,实时监控。为建筑工地扬尘治理提供信息化监管手段。

城市建设工地扬尘噪声在线监测系统符合住建局新下发文件要求,具有中国环境保护产品认证证书(CCEP)、省(市)级计量院出具的计量器具形式批准证书(CPA),并配置有符合文件标准的高低位双摄像头,多方位、多形式的监控工地扬尘的整体状况,24小时全天候的监测PM2.5、PM10、TSP要素参数,可无缝对接联网到监管平台。

城市建设工地扬尘噪声在线监测系统的简介:

建筑工地扬尘污染监控系统由颗粒物在线监测仪、数据集和传输系统、监控系统、后台数据处理系统及信息监控管理平台共四部分组成。系统集成了物联网、大数据和云计算技术,通过光散射在线监测仪、云台摄像头、气象五参数集设备和集传输等设备,实现了实时、远程、自动监控颗粒物浓度;数据通过用3G/4G网络传输,可以在智能移动平台、桌面PC机等多终端访问;监控平台还具有多种统计和高浓度报警功能。

建筑工地扬尘污染监控系统是符合GB3096-2008《声环境质量标准》和GB3095-2012《环境空气质量标准》中规定,进行不同声环境功能区扬尘重点监控区监测点的连续自动监测且具有完善功能的扬尘噪音监测设备,主要用于主要适用于数字城管、智慧城市、建筑工地、垃圾场、拆迁工地、码头、产业园、社区、道路扬尘环境监测监控中心。

工地扬尘在线监测设备厂商直销的产品优势:

系统基于对城市工地扬尘污染监控管理的需求而设计,技术特点和优势主要体现在以下三点:

(一) 监测终端系统系统集成了TSP、PM10、PM2.5、温度、湿度、风向和风速、大气压,降雨量等多个环境参数,全天候24小时在线连续监测,全天候提供工地的空气质量数据,超过报警值时还能自动启动监控设备、降尘设备,具有多参数、实时性、智能化等特性;

(二) 通过传感网、无线网、因特网这三大网络传输传输数据,快速便捷地更新实时监测数据;

(三) 基于云计算的数据中心平台汇集了不同区域、不同时段的监测数据,具有海量存储空间,可进行多维度、多时空的数据统计分析,便于管理部分有序开展工作,同时也为建立工地环境污染控制标准积累数据,以推动对空气污染的长效管理。

(四)整个系统用自由模块化组合,根据无组织污染监控需求,灵活增加或者削减不同监测项目,同时自由模块化组合可以在核心传感器发生故障的情况下,无需返修的前提下,可随时自行更换传感器,且不影响整套设备正常运行,解决了传统设备出现故障整机返厂费时费成本的难题

CW-76S工地扬尘传感器(粉尘检测仪 vx )是深圳市赛纳威环境科技有限公司自主研发的集空气动力学、数字信号处理、光电一体化 shi-liu-kai 的高科技产品,主要应用于检测大气中的粉尘质量浓度(PM值),适用于建筑工地、城市网格化监测、移动监测等领域和场合,是大气质量检测系统的核心模块。

如何提高新时期决策气象服务质量

1.地图中都有哪些符号分别表示什么意思识地图的基本知识

貌形态(如冰川、河谷、岩溶、黄土沟谷、海岸等),也能为旅游者提供更全面、更直观的旅游区域概况. 有声地图 纸张是地理信息的常见载体,尽管通过图型的合理设计以及色彩的科用,图面的载负量已经相当可观,但是需要在地图上表示的地理信息量更大,往往受到幅面、比例尺的限制,只能有选择地表示部分信息,且以静态的地理景观及其时空分布特征为主.过分强调提高图面载负量,有时还会适得其反.而增加地图的信息容量,提高应用效果的有效途径之一是改变纸张作为单一的载体形式.于是,就将具有高密度记录信息的磁带加上附加装置与常规地图相结合,形成了“有声地图”.有声地图是根据人的视听处于比例协调的情况下,能够帮助提高识记能力的原理而设计制作的.根据心理物理学研究表明,在人类的感觉器官中,以视觉传递信息最快,听觉次之,如果用一定的比例混合使用视觉和听觉,在大脑皮层上建立起来的暂时神经联系会不断得到补充、修正、完善,最后形成完整的物像概念.有声地图由普通地图、指控器、检索垫和录放机附加器所组成.指控器是一根由电子线路构成的指示棒,可用来指点地图上的地物符号,并能从磁带中检索出地物符号的说明;检索垫是由尼龙做成的,表面印有能作为地图定位用的许多方格,夹层内具有导电树脂混合胶印成的检索栅格和引出电极;录放机附加器具有记忆、寻址和控制功能,它受检索垫输出的信号控制.有声地图使用时,只要将地图放在检索垫上,并按原来的定位要求定位,当指控器指向地图某一地物符号时,指控器输出的检索信号由检索垫夹层内的栅格通过引出电极进入录放机附加器,并从磁带上检索出相应的解说内容.这样,在观察地图上某一地物符号的同时,也能听到有关该地物的解说.随着时间的延续,视觉注视某一地物符号,听觉却在不断按受新的内容信息,此时,使人处于思想高度集中的状态,有利于提高地图的阅读和应用效果. 数字地图 普通的地图都是印刷在纸上或其它材料上,可以直接进行阅读、量算.而数字地图则是一种把需要表示在地图上的所有信息经过数字化贮存在计算机内不显示图形,使用时则进行有目的处理、分析,然后以图形和其它形式(剖面、过程线等)或直接提供答案数据的方式表示的特种“地图”.它的数据来源于各种遥感图像以及普通地图、专题地图,运用专门的程序将这些信息全部转化为各类数据,可根据用户要求进行分类、组合、计算、处理,然后形成不同比例尺系列的各种新图型.由于数字地图快速、精确、信息量丰富、图型新颖多样,用途日益广泛.如以数字地图形式表示的交通图可以根据需要及时显示所需地区的图形并将比例尺调整至足以分辨的程度,提供不断变化着的详细的道路信息.又如瑞士国家图集,也可将其全部信息存贮在一张特定的46软盘上,供读者在微机上调用、阅读. 盲文地图 专供盲人使用,以大小相同、不同组合的凸形圆点显示地物要素.这在许多国家都有制作,小比例尺的如波兰地图,大比例尺的如美国编制的白宫游览图等. 发光地图 也称夜光地图、荧光地图,是用特制的彩色油墨和普通印刷方法,将地图内容印在特制的荧光纸上,在黑暗环境下,借助不可见的紫外线连续照射图面,从而清晰地阅读内容.荧光地图种类很多,有荧光地形图、荧光航海航空图及其它地图,广泛运用于夜间军事行动或地下工程使用. 非纸质地图 根据承载地图要素的材料,有塑料(塑料片、塑料布、珠光塑料膜等)、丝绸、涤棉等多种非纸质地图.这些地图一般都具有耐折、耐磨、轻便、不怕水等特点,其中涤棉地图是作为教学挂图的良好材料,愈来愈受到教师的喜爱及用;塑料地图中的透明聚酯塑料片地图,往往可以作为地图集的第二底图(如制作行政区的塑料片底图,可以覆盖在各种专题地图上,供专业分析)或作为某一专题图的组合(如用塑料片制作点法的人口图,作为覆盖在其它人口图上进行分析). 地图是一个“大家族”.如果按照地图的功能作介绍,那么随着国民经济的发展及科学技术的进步,还有不少新的品种.所有这些特种地图和我们常见的普通地图、专题地图、影像地图,在各行各业中,特别在科学文化教育事业中发挥着巨大的应用潜力并起着愈来愈重要的作用. 我国古代地图学家——裴秀 裴秀是我国古代一位优秀的地图学家和地理学家,是一位制图体制的革新者,他以自己的研究所得创造性地提出了“制图六体”,这在我国地图史上有着划时代的意义,而且在世界地图史上也占有重要地位.有人把我国的裴秀和欧洲地图学者托勒密(约公元99年—168年)比作古代地图史上东西方相辉映的两颗巨星. 裴秀,字季彦,河东闻喜(今山西省闻喜县)人,生于公元223年(魏文帝黄初四年),卒于公元271年(晋武帝秦始七年),享年48岁.他的祖父裴茂曾做过汉朝尚书令,他的父亲裴潜做过魏国的尚书令.裴秀年幼时聪明好学,《晋书·裴秀传》中说他“博学强记,无文不读”.由于家居宦门,又有才能,所以晋武帝时便官至“司空”,管理国家的户籍土地田亩赋税及地图等事.34岁时随晋文帝司马昭到淮南征伐诸葛诞,给晋文帝出谋献策.诸葛诞平定后裴。

2.怎么正确理解卫星地图

在卫星地图上有的时候会受到拍摄角度的影响你会看到三个面或者两个面如果是垂直90度则是一个面,经验少的人则不容易看懂,在初中的地理书中有关于山脉丘陵断崖等等的识别标志,鉴于你的这种情况还是应以熟悉地形以及培养自己三维立体空间感为主,对地形的熟悉和良好的三维立体空间感会在你的大脑里形成衣服类似于卫星地图的虚拟画面.再根据扎实的基础知识能帮助你在不同的卫星地图找到你想要知道的地方这还需要良好的方位感,进行三、三维立体空间感的训练很简单你只需要在你的大脑把一个立体盒子六面进行拆卸重组,使用不同的方式进行构想并且要看到每一个面,还有就是画画更加容易加深这种感觉。

3.怎么正确理解卫星地图

卫星地图,简称卫星图,确切的说法是卫星遥感图像,也叫卫星影像。

所谓遥感,即遥远地感知。卫星遥感即通过卫星在太空中探测地球地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。

将这些电波信息转换、识别得到的图像,即为卫星图。 卫星地图是卫星拍摄的真实的地理面貌,所以卫星地图可用来检测地面的信息,你可以了解到地理位置,地形等。

这些信息,可以应用于城乡规划,通过卫星地图的gps导航系统,可以告诉你,你现在身处何方,你将前往的那个地方怎么走等等信息。如果是实时监测的卫星地图,可以作用于军事指挥部署,抗灾救灾部署,监控火灾等自然灾害,还可以应用于警察追捕通缉犯等等。

参考资料:

/view/1311645。

4.有关于卫星的知识

现在向你提供有关卫星运动的物理原理我们知道,卫星是不依靠任何动力装置就能保持在天上飞行的,为什么呢?要知道,地球的引力是相当可观的,哪怕到了月球这个距离,地球的引力还是巨大的,那么,卫星是依靠什么来抵消引力的影响的呢?答案是圆周运动.不论是自然的卫星还是人造卫星,都在以巨大的速度围绕地球进行匀速圆周运动,在几千米每秒的速度下还要圆周运动,其离心作用是巨大的,这就正好能和引力抵消了.所以,只要是颗卫星,就得高速饶地球运动.所有的地球同步卫星都在赤道上方离地心约6倍于地球半径之处的运动——那是相当恐怖的距离了。

5.有关于地图的知识

编辑本段定义 地图是按照一定的法则,有选择地以二维或多维形式与手段在平面或球面上表示地球(或其它星球)若干现象的图形或图像,它具有严格的数学基础、符号系统、文字注记,并能用地图概括原则,科学地反映出自然和社会经济现象的分布特征及其相互关系。

现阶段地图的定义是:以一定的数学法则(即模式化)、符号化、抽象化反映客观实际的形象符号模型或者称为图形数学模型。编辑本段简史 在史前时代,古人就知道用符号来记载或说明自己生活的环境、走过的路线等。

现在人们能找到的最早的地图实物是刻在陶片上的古巴比伦地图(如图01-01) 据考这是4500多年前的古巴比伦城及其周围环境的地图,底格里斯河和幼发拉底河发源于北方山地,流向南方的沼泽,古巴比伦城位于两条山脉之间。 留存至今的古地图还有公元前1500年绘制的《尼普尔城邑图》,它存于由美国宾州大学于19世纪末在尼普尔遗址(今伊拉克的尼法尔)发掘出土的泥片中(如图01-02)。

图的中心是用苏 美尔文标注的尼普尔城的名称,西南部有幼发拉底河,西北为嫩比尔杜渠,城中渠将尼普尔 分成东西两半,三面都有城墙,东面由于泥板缺损不可知。城墙上都绘有城门并有名称注记 ,城墙外北面和南面均有护城壕沟并有名称标注,西面有幼发拉底河作为屏障。

城中绘有神 庙、公园,但对居住区没有表示。该图比例尺大约为1∶12万。

留存有实物的还有古埃及人于公元前1330~前1317年在芦苇上绘制的金矿山图。 ? 我国关于地图的记载和传说可以追溯到4000年前,《左传》上就记载有夏代的《九鼎图 》。

古经《周易》有“河图”的记载,还有“洛书图”,表明我国图书之起源。传世文献《周 礼》中有17处关于图的记载,图又与周官中14种官职相关联,如“天官冢宰·司书”“掌邦 中之版,土地之图”;“地官司徒·大司徒”“掌建邦之土地之图,与其人民之数以佐王 安 抚邦国。

以天下土地之图,周知之地域,广轮之数,辨其山林川泽丘陵坟衍原隰之名 物 ,而辨其邦国都鄙之数,制其畿疆而沟封之,设其社稷之?而树之田主”;“地官司徒 ·小司徒”“凡民讼,以地比正之,地讼,以图正之”;“地官司徒·土训”“掌通地图,以 诏地事”;“春官宗伯·冢人”“掌公墓之地,辨其兆域而为之图”;“夏官司马·司险 ” “掌之图,以周知其山林川泽之阻,而达其道路”;“夏官司马·职方氏”“掌天下 之 图,以掌天下之地,辨其邦国都鄙,四夷八蛮、七闽八貉、五戎六狄之人民,与其财用,九 谷六畜之数要”。1954年6月,我国考古工作者在江苏丹徒县烟墩山出土的西周初青铜器“ 宜侯矢?”底内刻铸的120字铭文有两处谈到地图,即“武王、成王伐商图”和“东国图 ”。

该 文记载周康王根据这两幅地图到了宜地,举行纳土封侯的册命仪式。曰:“唯四月辰在丁未 ,王者武王遂省、成王伐商图,遂省东或(国)图。

王立(位)于宜,内(纳)土,南乡(向)。王 令虞侯曰:‘繇,侯于宜。

’”据考证,该图成于公元前1027年或稍晚。这些记载足以说明 ,我国西周时期已有土地图、军事图、政区图等多种地图,并在战争、行管、交通、税 赋 、工程等多方面得到应用。

这些地图显然已经脱离了原始地图的阶段,具有了确切的科学概 念。只可惜我国至今还没有见到过这些地图实物,有待地下考古的发现。

编辑本段类型 (1)按其区域范围分为:世界图、半球图、大洲图、大洋图、大海图、国家(地区)图、省区图、市县图等。 (2)按其专题学科分为:自然地图、人口图、经济图、政治图、文化图、历史图。

(3)按其具体应用分为:参考图、教学图、地形图、航空图、海图、海岸图、天文图、交通图、旅游图等。 (4)按其使用形式分为:挂图、桌面图、地图集(册)等。

(5)按其表现形式分为:缩微地图、数字地图、电子地图、影像地图等。 (6)按其印刷开本分为:16开、8开、4开,对开,全张、两全张、三全张、四全张,九全张。

(7)按地图分类:地图集,电子地图,三维地图,卫星地图,影像地图等。 按照地图的内容,地图可分为普通地图、地形图和专题地图三种。

普通地理图(General Map)是以同等详细程度来表示地面上主要的自然和社会经济现象的地图,能比较全面地反映出制图区域的地理特征,包括水系、地形、土质、植被、居民地、交通网、境界线以及主要的社会经济要素等。它和地形图的区别主要表现在:地图投影、分幅、比例尺和表示方法等具有一定的灵活性,表示的内容比同比例尺地形图概括,几何精度较地形图低。

地形图(Topographic Map)是指国家几种基本比例尺(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)的全要素地图。它是按照统一的规范和符号系统测(或编)制的,全面而详尽地表示各种地理事物,有较高的几何精度,能满足多方面用图的需要,是国家各项建设的基础资料,也是编制其它地图的原始资料。

专题地图(Thematic Map)是着重表示一种或几种自然或社会经济现象的地理分布,或强调表示这些现象的某一方面特征的地图。专题地图的主题多种多样,服务对象也很广泛。

可进一步分为自然地图和。

6.地图的基础知识

一.什么是地图 地图是按一定的数学法则和综合法则,以形象-符号表达制图物体(现象)的地理分布、组合和相互联系及其在时间中的变化的空间模型,它是地理信息的载体,又是信息传递的通道。

二.地图制图学及其理论基础 地图制图学属地球科学中的一门学科。主要是研究地图的实质(性质、内容及其表示方法)发展、制图理论和技术方法的的一门科学。

它的任务是获取各种类型的、高速优质的地图。是制作地图的科学。

地图是人类认识客观世界、反映自然的特殊形式。地图的制作不是单纯的技术问题,而是人类认识客观的能力和水平的反映。

三.地图制图学及其组成部分 地图概论:研究地图的发展规律、特点以及地图的性质、分类、用途、内容及表示方法等。 地图投影学:研究地图上点的平面直角坐标(或极坐标)同地球椭球体表面上相应点的地理坐标(经纬度坐标)之间的函数关系,研究投影的理论、性质、变形规律、计算方法投影的判别和选择,以及在编制地图中不同投影的转换问题。

地图编制学:研究制图资料编制地图的理论、技术方法和程序。 地图绘制学:研究绘制出适合于制印要求的出版原图的理论和技术。

地图整饰:研究地图内容的表现形式,如色彩、线划、符号、图名的设计、地貌立体表示等 地图制印学:研究复制地图生产过程和有关的理论、技术方法、设备、材料性质及使用等。 地图量测学:研究地图上量测方向、距离、面积、体积等的方法和技术。

地图设计:研究地图的编辑设计,地图设计的理论基础及提高地图表现力的理论依据。 --------------------------------------------------------------------------------2. 地图基本概念-特性、分类、用途、工艺: [回目录] [前一篇] [下一篇] [回主页] 一.地图的特征 地图的特征包括:由于特殊的数学法则而产生的可量测性;由于使用符号表象事物而产生的直观性;由于制图综合而产生的一览性。

二.地图的分类 一.按区域范围分类:分为世界图、国家图、分区图、省图、市县图、乡镇图等; 二.按地图内容分类:分为两大类,普通地图和专题地图。 普通地图是以相对平衡的详细程度表示地球表面上的自然地理和社会经济要素(基本要素包括居民地、交通网、水系、地貌、境界、土质植被等)的地图。

其中详细表示地面的各基本要素的叫地形图;内容比较概略,但主要目标很突出,以反映各要素基本分布规律为主的地图称为地理图;介于两者之间的叫地形地理图。 专题地图是以普通地图作为底图基础的,重点反映某一种或几种专门的要素,依内容要素可分为:自然地理图、社会经济地图和工程技术图。

三.按比例尺分类 大比例尺地形图:1:5千—1:2.5万比例尺地形图 中比例尺地形图:1:5万—1:25 万比例尺地形图 小比例尺地形图:1:50万-1:100万比例尺地形图 我国称1:1万、1:2.5万、1:5万、1:10万、1:25万、1:50万、1:100万七种比例尺普通地图为国家基本比例尺地形图 按国家测绘局制定的统一技术标准制图(规范、图式)。 相关内容 功能演示栏目下的转换及投影中的标准图框 三.地图的用途 四.地图生产的基本过程 --------------------------------------------------------------------------------3. 地图数学基础: [回目录] [前一篇] [下一篇] [回主页] 一.地球椭球体 地球是一个表面很复杂的球体,人们以想的平均静止的海水面形成的“大地体”为参照,推求出近似的椭球体,理论和实践证明,该椭球体近似一个以地球短轴为轴的椭园而旋转的椭球面,这个椭球面可用数学公式表达,将自然表面上的点归化到这个椭球面上,就可以计算了。

常用的一些椭球及参数 海福特椭球(1910) 我国52年以前基准椭球 a=6378388m b=6356911.9461279m α=0.33670033670 克拉索夫斯基椭球(1940 Krassovsky) 北京54坐标系基准椭球 a=6378245m b=6356863.018773m α=0.33523298692 15年I.U.G.G推荐椭球(国际大地测量协会15) 西安80坐标系基准椭球 a=6378140m b=6356755.2881575m α=0.0033528131778 WGS-84椭球(GPS全球定位系统椭球、17届国际大地测量协会) WGS-84 GPS 基准椭球 a=6378137m b=6356752.3142451m α=0.00335281006247 地球椭球面上任一点的位置,可由该点的纬度(B)和精度(L)确定,即地面点的地理坐标值,由经线和纬线构成两组互相正交的曲线坐标网叫地理坐标网。由经纬度构成的地理坐标系统又叫地理坐标系。

地理坐标分为天文地理坐标和大地地理坐标 天文地理坐标是用天文测量方法确定的,大地地理坐标是用大地测量方法确定的。 我们在地球椭球面上所用的地理坐标系属于大地地理坐标系,简称大地坐标系 确定椭球的大小后,还要进行椭球定向,即把旋转椭球面套在地球的一个适当的位置,这一位置就是该地理坐标系的“坐标原点”,是全部大地坐标计算的起算点,俗称“大地原点” 二.地图投影 是为解决由不可展的椭球面描绘到平面上的矛盾,用几何方法或数学分析的方法,将地球上的点和线投影到可展的曲面(平面、园柱面或圆锥面)上,将此可展曲面展成平面,建立该平面上的点、线和地球椭球面上的点、线的对应关系。

相关内容 功能演示栏目下的转换。

7.谷歌卫星地图的相关使用知识,谁有啊

由谷歌卫星地图发展起来的定位系统

在完成了无线搜索的基础服务以及终端市场的占领之后,谷歌便以此为圆心,开始向纵深发展。如谷歌卫星地图以及由此发展起来的定位系统Google Latitude,这个应用无论对个人用户还是企业用户,都将有无限的想像空间;此外,生活服务搜索也是谷歌的一大亮点,从天气到房屋,从餐饮到地图,事无巨细都可通过谷歌查找,无疑增强个人用户的粘度。最后,把Google AdSense搬到无线互联网,则表明谷歌对无线互联网广告的着重,随着3G的发展,无线互联网网站的快速增加,Google AdSense在无线网络广告市场也势必

(03/20/2009 15:29:17) [查看全文]

印度版谷歌卫星地图对重点建筑将进行遮盖等处理

据国外媒体报道,印度正在谋划本国版的“Google地球”,该印度版谷歌卫星地图的产品提供的信息种类比Google地球还要丰富,同时一些安全人士担心,免费提供的卫星地图可能被 *** 所利用。

印度版的“Google地球”名叫Bhuvan,是一种基于网页的服务,提供者是印度国家遥感中心。该中心官员表

(03/20/2009 15:23:55) [查看全文]

谷歌卫星地图中文版 丰富的用户体验

Google搜索引擎一直把用户体验放在第一位的,而谷歌晰卫星地图也同样把用户体验放在首位。记得第一次使用谷歌卫星地图中文版,当看到自己熟悉的城市和建筑通过卫星地图显示在眼前的时候,真是感到万分的震撼。

第一次感受到,原来地图也可以这样来玩;第一次感觉到,原来家乡离我是这样的近;也第一次的理解卫星地图给人们生活带来的便

(03/20/2009 15:19:24) [查看全文]

谷歌卫星地图 内容丰富的地图

丰富的地图是什么意思呢?很简单。谷歌晰卫星地图会把你所查找地区的实物信息完整的展现在你眼前。如果你需要去某个地方,哪怕从没有去过,那么当你使用这样地图,迷路的概率则会降到最低。尤其通过谷歌卫星地图中文版的功能,您将会很容易找到目的地。

(03/20/2009 15:15:54) [查看全文]

谷歌卫星地图 活着的地图

想必用过谷歌卫星地图中文版的朋友都会知道,谷歌晰卫星地图的特色之一就是会不断更新,把你所需要获知城市或者地区的地图不断的更新在地图中。这样比起传统的地图来说,会让人感觉到这样的地图不会失效,不会用用不到,所以说这是很重要的特色之一。

(03/20/2009 15:13:18) [查看全文]

独特的谷歌卫星地图

对Google熟悉的朋友对谷歌晰卫星地图是不会陌生的。平时我们所接触的地图都是平面的,是固定的,是很死板的,没有什么丰富的内容和功能。虽然这几年来网上地图如雨后春笋般的出现,功能也比普通的地图更为丰富,但是因为缺乏立体感和即时功能,对使用者而言,还是有所缺憾。

8.有哪些人造卫星的知识

这种奇特的星星并不是宇宙间的星球,而是人类挂上天宇的明灯—人造地球卫星。

它们巡天遨游 ,穿梭往来,忠实地为人类服务,给冷寂的宇宙增添了生气和活力。 人造卫星是个兴旺的家族,如果按用途分,它可分为三大类:科学卫星,技术试验卫星和应用卫星。

科学卫星是用于科学探测和研究的卫星,主要包括空间物理探测卫星和天文卫星,用来研究高层大气,地球辐射带,地球磁层,宇宙线,太阳辐射等,并可以观测其他星体。 技术试验卫星是进行新技术试验或为应用卫星进行试验的卫星。

航天技术中有很多新原理,新材料,新仪器,其能否使用,必须在天上进行试验;一种新卫星的性能如何,也只有把它发射到天上去实际“锻炼”,试验成功后才能应用;人上天之前必须先进行动物试验……这些都是技术试验卫星的使命。 应用卫星是直接为人类服务的卫星,它的种类最多,数量最大,其中包括:通信卫星,气象卫星,侦察卫星,导航卫星,测地卫星,地球卫星,截击卫星等等。

人造卫星的运行轨道(除近地轨道外)通常有三种:地球同步轨道,太阳同步轨道,极轨轨道。 地球同步轨道 是运行周期与地球自转周期相同的顺行轨道。

但其中有一种十分特殊的轨道,叫地球静止轨道。这种轨道的倾角为零,在地球赤道上空35786千米。

地面上的人看来,在这条轨道上运行的卫星是静止不动的。一般通信卫星,广播卫星,气象卫星选用这种轨道比较有利。

地球同步轨道有无数条,而地球静止轨道只有一条。 太阳同步轨道 是轨道平面绕地球自转轴旋转的,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度(360度/年)的轨道,它距地球的高度不超过6000千米。

在这条轨道上运行的卫星以相同的方向经过同一纬度的当地时间是相同的。气象卫星,地球卫星一般用这种轨道。

极轨轨道 是倾角为90摄氏度的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个地球表面。气象卫星,地球卫星,侦察卫星常用此轨道。

别看人造卫星个头不大,五脏可齐全呢!它的通用系统有结构,温度控制,姿态控制,能源,跟踪,遥测,遥控,通信,轨道控制,天线等等系统,返回式卫星还有回收系统,此外还有根据任务需要而设的各种专用系统。

9.卫星地图的主要特点是什么

卫星地图,简称卫星图,确切的说法是卫星遥感图像,也叫卫星影像。所谓遥感,即遥远地感知。卫星遥感即通过卫星在太空中探测地球地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。将这些电波信息转换、识别得到的图像,即为卫星图。

和普通线划地图相比,卫星地图具有鲜明的特点:一是以丰富的影像细节去表现区域的地理外貌,比单纯使用线划的地图信息量丰富,真实直观、生动形象,富于表现力。二是用简单的线划符号和注记表示影像无法显示或需要计算的地物,弥补了单纯用影像表现地物的不足,因而减少了制图工作量,缩短了地图的成图周期。

我一般用实时地球(1010earth)来浏览卫星地图的,地图影像每日更新,而且分辨率都很高。

选址阶段环境背景调查与监测

主要抓好以下八项工作:

(一)着力提高气象防灾减灾能力和水平

气象灾害防御形势严峻,涉及面广,社会关注度高。要切实履行基本职责,不断加强能力建设,着力提高气象防灾减灾水平和效益。

完善气象防灾减灾工作机制。努力做到重大气象灾害与衍生次生灾害预报准确,预警及时,信息传播快速,确保预报预警信息发布不出现失误。进一步完善“主导、部门联动、社会参与”的气象灾害防御机制,强化与各级防灾减灾及应急管理部门之间的信息共享和应急联动,深化防灾减灾整合与协调配合。切实发挥国家突发预警信息发布体系建设效用。

加强基层防灾减灾体系建设。落实中央一号文件要求,着力推动基层气象防灾减灾服务融入式发展。推进基层气象防灾减灾工作逐步纳入地方基层组织体系和公共财政预算,纳入地方“三定”方案和绩效考核体系。推进基层气象防灾减灾发布手段融入地方社会治理体系和基层网格化管理体系,融入各部门减灾示范社区、智慧社区创建,融入各类公共服务信息平台,实现信息发布手段互联互通、共建共享和安全运维。推动将气象信息员纳入地方公共服务组织管理体系,加强管理与效能考核。

依法开展气象防灾减灾工作。强化依法履职意识和责任,扎实推进气象防灾减灾的相关法律法规的有效实施,依法规范、部门、社会和公民在防灾减灾中的责任和义务。推动建立主导下重大气象灾害预警的社会应急响应机制。强化对重点领域、重点区域、重点单位极端天气公共安全的依法监督职责。引导和鼓励社会志愿者参与气象防灾减灾服务。进一步加强气象防灾减灾科普宣传工作。

提高气象灾害风险管理水平。强化风险防范意识,逐步建立气象灾害风险管理业务。加强气象灾害风险普查,建设灾情信息管理系统,初步实现灾害信息实时、快捷、综合集。开展台风、暴雨、干旱气象灾害风险评估和灾害风险区划试点,发展定量化的灾害风险评估业务,着力提高对地质灾害隐患点、设施农业、交通气象的影响预报和风险预警的针对性、有效性。发挥保险机构、红十字会等组织在气象灾害风险转移中的作用,建立重大气象灾害及次生衍生灾害跨部门联合调查制度。发展防灾减灾与公共气象服务效益评估业务,逐步建立国家、省两级气象服务白皮书制度。

(二)全力做好各项气象服务

气象服务是立业之本。要始终把做好气象服务放在首位,坚持“面向民生、面向生产、面向决策”,全力做好各项气象服务。

努力提升气象服务“三农”的水平。创新气象为农服务机制,融入农业社会化服务体系。深化联合会商和产品制作发布机制,加强国家级与省级农业气象业务服务的技术指导和支撑反馈,强化关键农时、重大农业气象灾害实时监测和定量影响评估服务。服务国家农业对外合作,继续做好国内主要农作物长势监测和产量预报,并逐渐向国外重点农产品和重点农业产区拓展。推进中央财政“三农”服务专项建设与现代农业示范区、综合减灾示范社区等的融合,深化基层气象为农服务社会化发展试点,推动气象为农服务“两个体系”可持续发展。

全力提高公众气象服务水平。创新服务方式,发展更加适应需求的个性化、多样化、专业化公众气象服务。继续加强气象服务品牌建设,强化按需服务、移动式交互、智能定位信息发布,推进新媒体技术在公众气象服务业务中的应用。继续推进气象服务进学校、进农村、进社区、进企事业单位、进工地,进一步扩大气象预报预警信息发布的覆盖面。

做好国家重大战略和重大活动气象服务。围绕国家重大战略,以及新型城镇化建设、大气污染防治等重大任务,优化需求导向的服务机制,强化专项气象服务业务。做好大型运动会和2022年冬奥会申办等重大活动气象保障服务工作。

加强各项专业气象服务。完成全国交通气象灾害风险普查,深入推进交通气象沿线精细化预报和高影响天气短临预报试点。继续推进与住建部城市内涝防治合作。加强流域气象中心业务能力建设,发挥服务防汛抗旱及重大水利工程建设运行等职责。与国土部联合开展地质灾害气象预报预警示范区建设。继续做好海洋、森林草原防火、旅游、电力等专业领域气象服务。加强安全生产气象保障服务。

(三)做好应对气候变化和生态文明建设服务支撑工作

应对气候变化和生态文明建设是攸关当前和长远利益的大事。要切实发挥应对气候变化的基础科技支撑作用,有力保障国家应对气候变化和生态文明建设。

强化气候变化适应工作。加快建设中国气候服务系统,强化传统天气气候服务与气候变化应对需求的融合。推进省级气候变化适应工作。做好能源设施、城乡建设、交通基础等关键领域的气候变化风险评估,建立极端气候预警指数和等级标准,继续开展气候变化对特色产业和行业的影响评估。

做好应对气候变化决策支撑。做好国家气候变化专家委员会的支撑工作,围绕巴黎气候变化大会、气候变化立法、我国二氧化碳峰值排放路径和气候变化适应等开展决策咨询。积极参加IPCC未来规划,科学支撑气候变化公约谈判,参与气候变化全球治理。

加强气候变化科学研究。深入开展气候变化规律研究。强化气候变化基础数据建设,稳步推进全球气候系统模式和区域气候模式研发,继续开展气候变化检测归因研究,启动气候变化综合评估模式研发。做好气候变化最新科学进展和热点问题的分析解读工作。

更加重视气候安全工作。根据国家应对气候变化战略,确定中长期气候安全目标,减轻气候变化对粮食生产、水、生态、能源、城镇化建设和人民生命财产的威胁,保障我国经济社会可持续发展。

加强生态文明气象服务。加强国家级、区域和省级环境气象预报预警业务能力和运行机制建设。推进与环保部门联合开展重污染天气预报预警和空气质量预报。发展污染源减排措施效果评估业务。继续做好生态脆弱区人工影响天气作业。加快推进区域人工影响天气工程立项建设。实施人工影响天气业务能力建设三年行动。促进气候合理开发利用,开展全国贫困县光伏发电评估与服务,组织开展风能经济开发潜力评估研究。加强城市规划、重大工程等气候可行性论证服务。

(四)全面深入推进气象现代化

气象现代化是兴业之路。要大力推进气象业务现代化、气象服务社会化、气象工作法治化,并将气象业务现代化作为核心重点任务来推动,落实目标任务和主体责任,全面深入推进气象现代化。积极发展现代气象服务业务。认真贯彻第六次全国气象服务工作会议精神,围绕构建中国特色现代气象服务体系的目标和要求,制定公共气象服务业务发展指导意见,集约化发展公共气象服务核心业务能力。强化决策气象服务业务能力建设。研发气象灾害影响预报和灾害风险评估技术,发展基于影响预报的专业气象服务业务。面向个性化服务需求,研发快速循环预报服务产品加工和产品检验监控系统。优化完善全国公共气象服务共享产品库。依托数据分析技术和新媒体,发展智能化公众气象服务业务。

深入推进现代气象预报预测业务。制订现代天气、气候业务发展指导意见,着力提升预报预测准确率和精细化水平。推进数值预报发展与应用,实现GRAPES全球模式业务运行,区域数值预报重点做好资料同化和产品应用工作。着力提高灾害性天气、局地性天气的分析能力和预报技术。开展全国10公里分辨率的精细化格点全要素预报业务试验。加强海洋气象、空间天气预报业务能力建设。实现第二代季节预测模式业务运行,进一步提高动力与统计相结合的客观预测技术水平。加快推进MICAPS4.0、SWAN2.0和CIPAS2.0系统建设,继续推进县级综合预报预警业务平台的建设与应用。召开第七次全国气象预报预测工作会议。

大力推进现代气象观测业务。强化综合观测业务的自动化、集约化、标准化,着力提高观测质量和效益。开展国家天气观测网台站遴选,加强国家基准站网建设,实现国家级台站和其他台站的分级管理。完成县级综合观测业务平台的试点工作并推广。统一各类自动气象站技术标准和数据格式,开展自动气候站设备选型,提高观测数据可同化水平。组织开展风廓线等观测资料的应用试验和观测预报互动科学试验,提高现代观测资料的应用水平。规范温室气体等大气成分业务,提高业务稳定运行能力。完成风云二号G星在轨测试并投入业务运行,统筹在轨气象卫星管理,优化地面应用系统设计,进一步提升气象卫星和雷达观测业务应用水平。加强国家级和省级计量检定能力建设,启动国家气象技术装备保障分中心(新疆)建设。严格执行气象专用技术装备许可制度。

着力加强气象资料业务和信息化基础能力建设。制订气象资料业务发展指导意见。加强气象资料基础工作。加快推进气象数据格式标准化工作。以推进全球气象再分析资料工作为抓手,优化气象数据集、收集、质控、存储和应用业务流程。重点推进卫星、雷达等资料质量评估业务应用和同化工作。规范各类气象资料质量和时效的考核评估。提高全国气象广域网传输能力。加快推进全国综合气象信息共享系统(CIMISS)业务化,推进国家、省两级集约化数据环境建设。国家级气象业务内网和中国气象数据网上线运行。启动实施国家级高性能计算机二期建设和气象业务异地应急备份中心(上海)建设。

进一步强化责任考核。出台《全国气象现代化发展纲要》,完善气象现代化考核评价指标体系。切实推进各项保障政策落地。国家级业务单位要积极主动履责,加强与相关单位互动对接,完成气象现代化实施方案年度任务。省级气象部门要强化责任担当,着力推进省级气象业务现代化,有序推进县级综合气象业务发展。充分发挥主导作用,将气象现代化工作纳入各级绩效考核中。

加强试点经验总结与推广。组织开展江苏、上海、北京、广东、重庆以及浙江杭州和宁波等第一批率先基本实现气象现代化试点总结评估,推广试点经验。加大对河南作为中部地区于2018年率先基本实现气象现代化试点省份的工作推进力度。针对东中西部各自不同发展特点,把握好东部率先,中、西部赶超的节奏。

(五)着力深化气象改革

改革是发展的动力源泉。要凝聚共识,密切跟踪国家改革进展,坚持目标导向和问题倒逼,以气象服务体制改革为重点、以防雷体制改革为突破口,以气象科技体制改革为抓手,扎实推进重点领域和关键环节的改革。认真落实气象服务体制改革部署。要按照《气象服务体制改革实施方案》的部署,以国家级和部分省级公共气象服务中心为试点,创新发展气象服务业务体制、服务供给体制和运行机制以及专业气象服务实体规模化发展机制,更好地发挥气象事业单位在公共服务中的主体作用。推进中央和地方气象防灾减灾事权和支出责任划分,健全购买气象服务制度。以气象为农服务社会化及大城市社区气象防灾减灾为试点,培育基层气象服务多元化提供主体。开展人工影响天气作业队伍纳入地方公共服务和保障体系试点。成立中国气象服务协会、中国人工影响天气协会。以上海自贸区气象服务管理和气象协会组织为抓手,制定出台气象服务管理办法、标准和规范,建立部门与社会组织对气象服务的市场管理机制。

加快推进防雷体制改革。依法加强雷电灾害防御工作的组织管理职能,发挥防雷减灾在保障公共和人民生命财产安全方面的作用。以激发市场发展活力,提升服务能力和创新方式为重点,试点带动,加快推进防雷体制改革,依法有序开放防雷检测市场,强化法规标准建设和市场监管。统一准入标准,制定出台全国防雷装置检测资质管理办法。清理与改革要求不相适应的规范性文件,完善防雷相关法规标准及业务规范,加强防雷服务市场监管。重庆、广东、浙江等试点单位要重点推进防雷工作政事企分开,发挥防雷服务行业协会作用,建立现代防雷企业制度,培育骨干企业。

稳步推进气象业务科技体制改革。按照信息化、集约化、标准化的发展要求,改革气象业务体制,优化气象业务布局、业务系统和业务流程,提升气象业务的效率和水平。通过试点建立省市县集约化的业务布局和业务流程,制定气象业务系统平台集约化发展指导意见。落实精细化气象预报服务产品制作向国家级和省级业务集约的气象服务业务技术体制。规范全国数值预报业务布局,制定数值预报业务发展改革指导意见。强化预报预测质量检验考核工作。建立预报员团队定量考核管理制度和激励机制。改革科研组织管理方式,进一步集中聚焦核心技术突破。深化气科院科技体制机制改革。完善以技术突破与业务贡献为导向的评价制度和激励机制,强化中试基地与业务用户参与成果评估,发挥学会等第三方机构在项目管理、科技奖励和成果评价中的作用。完善合作共赢机制,引导利用国内外优势参与重大核心任务协同攻关。

密切跟踪落实国家各项改革。及时贯彻落实国家关于科技体制、人事制度、财税制度及其他改革政策。配合中编办制定地方气象管理权力清单指导意见。继续推进气象行政审批制度改革,强化分类指导、上下协调、有序承接,建立完善规章制度、审批程序和事中事后监管措施,做到放管结合、监管到位。深化部门预算管理体制改革,管好用好财政资金。完善双重体制和相应财务渠道,积极争取地方财政解决气象部门职工的地方性津补贴。

认真组织并推进改革试点工作。总结省级气象局事业单位分类改革试点,推进省及省以下气象事业单位分类改革。切实抓好各试点单位经验总结,查找并解决存在的问题,创造出一批可复制、可推广的经验和做法,探索形成一批特色鲜明的改革成果。

(六)大力推动创新驱动发展

创新始终是推动事业向前发展的重要力量。要大力实施国家气象科技创新工程,培养创新型人才,着力推进气象信息化建设,有力保障和支撑气象现代化。

加快推进科技创新体系建设。全面落实国家气象科技创新工程核心攻关任务。发挥中央财政科技资金效益,落实四项研究重点任务。做强部门科研院所,优化学科布局,构建科研业务紧密结合的学科体系和协同攻关机制。加强区域科技协同创新,围绕区域重大业务核心技术进行攻关。优化气象科技基础条件平台,强化野外科学试验基地的开放共享。建立气象科技成果认定和分类评价制度。推动成果转化应用和向技术标准的深度延伸。完善有利于激发创新活力的激励制度。深入推进科技研发任务法人责任制落实。

加强创新型人才队伍建设。坚持党管人才原则,进一步强化人才工作“一把手”责任制。围绕国家气象科技创新工程,组建核心技术领域创新团队。完善人才和团队的评价激励等政策措施。深入实施“双百”、强基工程和青年英才培养。加强新理论新知识新技术新方法培训。开展人才政策执行情况评估,优化人才发展环境。联合教育主管部门和高等院校,加强气象学科建设和人才培养。加强西部欠发达地区人才队伍建设。

加快推进气象信息化工作。加强顶层设计,完成气象信息化总体规划编制。充分利用现代信息技术,强化气象信息化标准规范体系建设,统筹气象业务、服务、科研、教育培训和行政管理等的信息和数据,逐步构建高效利用、数据充分共享、流程高度集约的气象信息化新格局。加强气象信息化工作统一领导,开展国家和省级气象业务信息化建设试点,推进气象信息化总体规划实施,推进“气象云”工程建设。建立气象信息化社会运行保障机制。

提升开放合作质量效益。制定新常态下具有前瞻性和可操作性的合作及方案,深化省部、部际合作。围绕国家“一带一路”等总体外交大局和气象事业发展全局,做好第十七次世界气象大会参会等重要国际气象合作机制建设工作。多渠道、多方式加强多双边气象合作,提升国际引智和培训工作水平。加强气象援外工作。继续做好港澳台及周边区域气象交流合作工作。进一步规范外事管理,加强国际合作队伍建设。

切实抓好规划实施和编制,促进区域协调发展。做好气象发展“十二五”规划的总结评估,积极参与国家“十三五”规划纲要和重大专项规划起草,组织编制“十三五”规划,提出未来五年气象事业发展重大工程和建设任务。加快《海洋气象发展专项规划(2014-2020年)》、气象卫星应用发展规划等专项规划的编制和审批。强化山洪地质灾害防治气象保障工程等项目的统筹建设与管理。开展气象监测与灾害预警工程、国家突发预警信息发布系统一期工程竣工验收。组织召开全国气象部门西藏工作会议。完善对口支援西藏和四省藏区、新疆及艰苦台站工作方案。扎实推进新疆兵地气象融合发展。重视和支持基层气象台站能力建设。

(七)全面推进气象法治建设

气象工作法治化是新时期全面推进气象现代化的内在要求。要坚持依法发展、依法行政、依法履职,全面提高气象工作法治化水平。

推进气象立法和标准化管理。积极参与全国人大常委会涉气象法律草案和院涉气象行政法规起草。继续推进气象灾害防御法和气候开发利用和保护条例的立法进程及《人工影响天气管理条例》修订。突出各地气象事业发展特色,加快推进地方气象立法步伐。切实提高气象标准质量,不断强化标准执行。加快霾等重点标准的制修订,建立以标准为依据的业务管理工作机制,清理修订完善现有业务规范,制定标委会绩效评价指标,开展标准实施情况的监督检查。

提升依法履行气象社会治理能力。全面梳理气象行政管理职能,制定气象部门权力和责任清单。完善并实施气象行政处罚自由裁量权管理办法和指导标准,做好气象行政执法监督检查,及时制止和查处违反气象法律法规的行为。继续开展防雷综合治理督导检查,加强事中事后监管。

提高依法管理气象事务水平。完善学法、用法制度,增强干部职工运用法治思维和方式推动改革发展的能力。完善重大决策法定程序,建立重大决策终身责任追究制度及责任倒查机制。积极推进国家和省级气象部门法律顾问制度。突出抓好局党组各项重大决策部署、事业发展重点目标、深化改革各项任务等的落实。改进目标管理,完善综合考评体系。重点解决不落实、难落实问题。强化职能调整和下放的衔接和后续工作。

(八)全面加强部门党建和文化建设

加强党的领导是全面推进气象现代化和深化改革的重要保证。要强化责任,加强思想、组织、作风、廉政和制度建设,营造奋发有为团结和谐氛围。

把从严治党要求贯彻各项工作始终。严守党的政治纪律和政治规矩,严明党的各项纪律。自觉把维护党中央权威、遵守党的政治规矩落实到全部工作中去。持续深入落实中央八项规定精神,严格执行有关制度。进一步精简公文数量,提高公文质量。强化会议管理监督,提高会议质量效率。厉行勤俭节约,严肃查处违反“约法三章”问题。持续反对“四风”,加强监督检查,及时发现和纠正存在的突出问题。组织开展教育实践活动专项检查,巩固拓展活动成果,健全作风建设长效机制。继续抓好机关作风建设月活动。

全面落实党风廉政建设主体责任。党风廉政建设主体责任是政治责任、直接责任。各级党组(党委)要统筹谋划,把党风廉政建设贯穿于各项工作的全过程。要紧紧抓住落实党风廉政建设主体责任这个“牛鼻子”,以上率下,层层传导压力,级级落实责任,强化党组(党委)责任担当,细化主体责任,建立责任台账,对主体责任不落实或落实不力的要严肃问责,要分级开展基层党组织主要负责同志党风廉政建设主体责任轮训工作

053H2G型护卫舰的设计特点

(一)目的任务

CO2地质封存选址阶段环境背景调查与监测的目的任务是对CO2地质封存选定场地及其周边一定范围内的大气环境、地表水环境、地下水环境、土壤环境、生态环境的环境质量现状,以及地表形变的变形程度与CO2浓度背景值等实施调查与监测,为判别CO2地质封存安全及环境问题提供环境比照依据;通过不同灌注方案灌注试验监测,获得灌注量、灌注压力、灌注速率、储盖层压力与温度、储层内CO2扩散运移与地下水水质变化等参数,为场地综合评价、灌注方案优化和规模化CO2地质封存工程设计提供监测数据。如选定场地转变为规模化CO2地质封存工程场地,对已建监测网点进一步优化,并逐步扩大,继续开展规模化CO2地质封存运营期和闭场后环境监测,为规模化CO2地质封存灌注场地安全运行和环境管理提供支撑。

(二)监测方案

CO2地质封存环境背景监测在场地选定后、灌注试验前开展,主要通过监测和样获取CO2灌注试验场地(以下简称“环境背景监测区”)人居环境、地表水环境和地下水环境CO2背景浓度,大气CO2浓度、土壤CO2通量,以及地表形变现状等的环境背景值,为判断CO2运移分布、泄漏、安全及环境风险分析提供环境背景值比照依据。

选址阶段环境背景监测用多种方法和多学科交叉的方式进行综合调查与研究。在全面收集、整理分析CO2灌注试验场地相关成果资料基础上,用大气CO2浓度监测、土壤气体监测、地表水和地下水监测、遥感和物探监测等技术方法开展监测工作。

CO2地质封存环境背景监测的主要监测对象有地表水、地下水、大气、土壤、植被指数、地表形变和地层参数等(表7-19)。

表7-19 环境背景监测对象、监测项目和监测周期一览表

环境背景监测区范围的确定,依据选址阶段数值模拟所得的最大CO2扩散羽在地表的投影而定,并适当扩大。

环境背景监测用的监测技术方法有离子选择电极、红外探测、水准测量、遥感和时移VSP地震等。按照综合调查→监测方案设计(监测对象、监测技术、监测点设置、数据处理等)→监测点布设→开展监测→数据收集、整理、分析的流程开展监测工作。

(1)通过野外调查和室内分析、研究,掌握环境背景监测区的气象条件、居民点分布、需要特别保护目标的类型与分布,以及地质、水环境、地形变、生态环境、生态敏感与脆弱区的基本特征。

(2)参照现行国家和行业监测标准技术规范,制定切实可行的监测方案;结合环境背景监测区的基本特征,构建大气、土壤植被、水环境、生态环境和人居环境等的环境背景监测区监测体系;明确监测人员组成和管理结构。

(3)根据不同的监测对象,用现场集、现场测试和自动监测技术相结合的技术方法,制定监测方案。

(4)应用确定的监测手段,对相应的监测对象,在相应的监测网点上,进行环境背景值监测和灌注试验监测。如灌注试验场地转化为规模化灌注场地,进一步制定灌注运行期年度监测和工作方案,随之开展规模化灌注期。

(5)进行环境背景监测资料整理,分析监测数据,编制CO2地质封存环境背景监测技术报告。按HJ/T 8.2—91《环境保护档案管理 · 环境监测》相关要求,对监测技术资料进行归档。

具体监测方案如图7-5所示。

图7-5 CO2地质封存场地环境背景监测方案框图

(三)监测方法

1.大气环境背景值监测

(1)监测点布置:监测点布置的基本原则是尽量实现以最少的监测点和监测期次获取代表性最好的数据。大气环境监测点的布设应在考虑环境背景监测区气象条件和地质环境背景的基础上,以人居安全性为重点,结合CO2的物理和化学性质,充分考虑可能的泄漏通道进行大气环境背景监测点布置。布设要点如下:

1)村镇、工厂等人口密集区;

2)地势低洼地带;

3)主导风向比较明显的情况下,应将下风向作为主要监测范围,布设较多的监测点;上风向布设少量的监测点作为对照;

4)地面沉降或者地面塌陷地带;

5)数值模拟出的CO2运移扩散区域对应的地表范围;

6)已处理的废弃井和油井及其附近;

7)CO2灌注试验井和监测井及其附近。

(2)监测项目:大气环境背景监测项目包括:时间、温度、湿度、风速、风向、云量、大气稳定度和CO2浓度。

(3)监测周期:每个监测点每月定期监测,每个监测点全年共监测12次。

(4)样方法:大气样品的集方法用直接样法,包括玻璃注射器样法、塑料袋样法、球胆样法、气管样法和样瓶样法等。

1)玻璃注射器样:用大型玻璃注射器(如100mL注射器)直接抽取一定体积的现场气样,密封进气口,送回实验室分析。在取样前必须用现场大气冲洗注射器3次,样品需当天分析完。

2)塑料袋样:用塑料袋直接取现场气样,取样量以塑料袋略呈正压为宜。注意应选择与集气体中的污染物不发生化学反应、不吸附、不泄漏的塑料袋;取样前应先用二联橡皮球打进现场大气冲洗塑料袋2~3次。

3)球胆样:要求所集的气体与橡胶不起反应,不吸附。取样前先试漏,取样时同样先用现场气冲洗球胆2~3次后方可集封口。

4)气管样:气管是两端具有旋塞的管式玻璃容器,容积为100~500mL。样时,打开两端旋塞,将二联球或抽气泵接在管的一端,迅速抽进比样管容积大6~10倍的欲气体,使气管中原有气体被完全置换出,关上两端旋塞,气体积即为气管的容积。

5)样瓶样:样瓶是一种用耐压玻璃制成的固定容器,容积为500~1000 mL。样时先将瓶内抽成真空并测量剩余压力,携带至现场打开瓶塞,则被测大气在压力差的作用下自动充进瓶中,关闭瓶塞,带回实验室分析。

6)集后如不能立即检测,应在4℃条件下冷藏保存。对分析有机成分的气样,集后应立即放入-20℃冷冻箱内保存至样品处理前。

(5)大气样分析方法:大气样分析方法首先选择国家颁布的标准分析方法,其次选择国家环保总局等颁布的标准分析方法。对没有标准分析方法的监测项目,用《空气和废气监测分析方法(第四版)》(国家环保总局,2003)中推荐的方法(表7-20,表7-21)。

(6)监测数据记录:大气CO2浓度现场监测原始记录表格式见表7-22。

表7-20 CO2分析方法与监测仪器性能指标

表7-21 气象设备技术性能指标

表7-22 大气CO2浓度现场监测原始记录表

2.土壤大气CO2通量背景值监测

土壤层是CO2泄漏到大气环境的必由之路。土壤大气CO2通量背景值监测时,通常将土壤气体抽取到累积室,然后使用闭路红外线土壤CO2通量系统对土壤气体中的CO2通量进行监测。

(1)监测点布置:监测范围包括以灌注井为中心的灌注中心区和灌注区外延区。中心区和外延区的划分主要依据灌注试验数值模拟得到的CO2扩散运移范围而定。在中心区内用网格化布点方法,每个网格内布设一个监测点,根据实际工程情况选取合适的网格间距。同时在灌注井和监测井周围加密布点。

灌注外延区的监测点布置主要遵循以下原则布点:(1)村镇和工厂等人口居住区;(2)推断的断裂带;(3)地层倾斜出露地表的地带;(4)地面沉降或者塌陷地带;(5)数值模拟所得的CO2扩散运移范围外环带。

由于土壤呼吸受温度、土壤湿度、土壤pH值、降雨和农业耕作等多种因素影响,为最大限度地排除干扰因素,土壤大气CO2通量监测的土壤深度建议在50 cm或50 cm以下。

(2)监测项目:土壤大气CO2通量、气温和湿度等。

(3)监测周期:每个监测点每月监测一次背景值,全年共计12次。监测时段为监测日当天上午9~11点,此时的土壤大气CO2通量最接近日平均值(Larionova et al.,1989;Didson et al.,1998)。每次监测要确保时间和地点上的可重复性。

(4)样方法:把CO2样钻钻入至土壤中所要测定的深处,取出土钻,弃去土钻中的土壤,再将土钻插入孔中,然后将钻筒往上提两转,使钻头与孔底间形成孔隙,然后压紧土钻周围的土壤,用皮管将土壤层CO2抽气钻与CO2气体吸收器相连接,用压力抽气瓶将土壤大气抽入集袋开始取样。取样之前需先抽取土壤大气,以使橡皮管及钻杆中都充满土壤大气。取样装置见图7-6。

取样后用记号笔标好样品编号,现场填写《土壤大气样记录表》,要求各栏内容填写齐全。如发现有错误或漏,应立即重或补。

(5)监测分析方法:土壤CO2通量测量方法主要包括气室法、气象色谱法、气井法和涡度通量法等。各方法比较见表7-23。

野外自动与便携式土壤CO2通量监测方法主要用非分散红外法,与CO2浓度测量相同,相关技术指标可参考表7-20。

(6)监测记录表:监测记录表见表7-24。

图7-6 土壤大气中CO2集装置图

表7-23 土壤CO2通量测量方法和优缺点一览表

表7-24 土壤大气CO2通量现场监测原始记录表

3.水环背景值监测

水环境背景值监测调查和监测对象包括,环境背景监测区一定范围内的地表水和地下水。

(1)监测点的布置:在监测点布置前,应搜集环境背景监测区水文地质、土地利用、地表水体分布与水利工程状况等资料,对环境背景监测区进行调查,然后遵循以下原则进行监测点布置。(1)各类分散式饮用水水源井和泉点;(2)河流、湖泊和水库等;(3)CO2灌注井和监测井;(4)地下水集中供水水源地。

(2)监测项目:为了满足水环境质量评价和保护要求,监测项目包括GH/T 14848—93《地下水质量标准》和GB 3838—2002《地表水环境质量标准》中要求控制的项目。为了发现CO2泄漏和研究储层CO2-水-岩化学反应机理,增加地下水特种化学组分监测项目。

水质监测项目包括水温、pH值、电导率、总硬度、碳酸根、重碳酸根、钙离子、镁离子、氯离子和总铁等。

(3)监测周期:为了获取丰富的水环境背景值资料,监测和样周期为各监测点每月样一次,全年共12次。遇到特殊情况或发生污染事故可能影响地下水和地表水水质时,随时增加样频次。

(4)样方法:在井中集水样时,必须在充分抽汲后进行,抽汲水量不得少于井内水体积的2倍,样深度应在地下水水面0.5 m以下,以保证水样能够代表地下水水质;对封闭的生产井可在抽水时从泵房出水管放水阀处样,样前应将抽水管中存水放净;及时填写水样标签,现场填写《地下水样记录表》。

水样的保存和运输见第三章第四节相关要求。

(5)监测分析方法:首先选择国家颁布的标准分析方法,其次选择国家环保总局等颁布的标准分析方法。对没有标准分析方法的监测项目,参照使用ISO分析方法或其他国际公认的分析方法。经过验证的新方法,其精密度、灵敏度和准确度不得低于常规方法。水环境背景值监测分析测试方法见表7-25。

(6)监测记录表:水质监测中涉及的记录表表格见表7-26~表7-30。

4.植被监测

环境背景监测区植被状况监测用遥感技术监测,目的是通过环境背景监测区及周围植被发育状况变化,为监测CO2泄漏及该工程对周围环境影响提供遥感基础资料。

植被状况遥感监测方法用信息提取及植被指数计算法。首先获取分期遥感监测数据,利用遥感信息提取方法划分环境背景监测区植被类型及分布状况,继而计算每期数据的各种植被指数,综合分析确认植被发育异常区的存在与否。

(1)监测内容及数据源。环境背景监测区植被遥感监测工作包括:遥感资料选取与资料收集、数据预处理、野外踏勘、光谱数据集与处理、遥感图像处理、遥感信息提取、野外现场验证、遥感影像图形制作和入库管理。

表7-25 水环境监测项目分析方法

表7-26 水样标签

表7-27 水环境监测点水质样记录表

表7-28 机、民井监测点基本情况调查表

表7-29 泉水监测点基本情况调查表

表7-30 地表水监测点基本情况调查表

1)遥感数据源:(1)高分辨率卫星遥感数据:空间分辨率在1~5m之间的全色和多光谱数据;(2)热红外遥感数据:空间分辨率在60~120m之间的热红外波段数据;(3)多光谱遥感数据:空间分辨率在5~30m之间的陆地卫星数据。

2)基础数据源:(1)最新版1 :1万、1 :5万纸质地形图及全要素数字化地形图;(2)气象资料,包括天气状况、气温、湿度和气溶胶状况等;(3)现场监测资料;(4)监测区地质资料、前人做过的相关研究成果资料等;(5)相关测量资料;(6)其他。

3)数据源要求:(1)根据提取的内容、目的,选择最佳季节的图像,以及能够分辨监测目标地物属息的变化。(2)图像的云覆盖不超过10%,相邻图像之间应有不小于图像宽度4%的重叠,图像层次丰富、清晰,满足监测任务的要求。(3)气象资料要选择与卫星过境时间一致或相近时段相似天气的气象资料。

(2)遥感背景值及动态监测。内容包括:

1)几何精校正控制点(GCPs)测量与野外踏勘:GCPs测量:按照图像分布面积大小,测量地面控制点,为图像几何精校正提供所需的测量控制点,测量精度优于1m。

2)解译标志建立:通过外业踏勘,建立植被遥感解译标志和分类样本库,拍摄相应的现场实况照片与影像,并进行详细的现场记录。

3)光谱数据集与处理:获取地物光谱数据和大气参数,为卫星遥感信息提取服务。根据获取的现场光谱数据结合卫星数据,提取地面植被相关信息。数据集主要实现现场植被、地物、大气原始数据的集工作。

a.陆地地物光谱信息集。

测量仪器:地物光谱仪;

仪器性能:光谱范围350~1050nm,光谱分辨率小于4 nm,视场角<10°,动态范围≥70 db,等效噪声辐亮度<1×10-9W·cm-2·sr-1·nm-1,波长准确性>1.0 nm,参考板为白板。

b.大气光谱集。

测量仪器:日照强度计和臭氧计等。

日照强度计可以监测440、500、675、870和1 020 nm这5个波段的气溶胶散射光学厚度。

臭氧计工作波段需要包括为305、312、320、936和1020nm等5个波段,其中305、312、和320nm等多个波段用来监测臭氧浓度,还需要936波段用来测量大气中的水汽含量,同时臭氧监测仪还需要监测1020nm波段的气溶胶散射光学厚度。

(3)遥感信息提取:在解译标志和分类系统的基础上,逐景图像进行解译。解译应以影像特征为基础,利用直接标志与间接解译标志进行相关分析;单景图像解译时,要依据解译原则,先进行宏观观察,掌握其整体的特征,先易后难,从浅入深,分别识别出地物的属性及勾画出其分布范围和界线,并用统一的符号和线条标示清楚,绘制出解译草图。对于解译与解译不清的重要地物,可用现场勘测方法解决。

解译过程中,要注意利用已知资料,对重要的地物和现象以及有疑问的地方应加以特别的标记,以便在野外校核时重点进行检查。室内解译的主要方法为人机交互式解译和计算机信息提取。

(4)监测范围和频率:监测范围以灌注井为中心,外延100 km2;地表植被监测频率为一个季度。

5.地表形变背景值监测

地面沉降或抬升等地表形变背景值监测可用传统水准测量和差分干涉合成孔径雷达测量技术(D-InSAR)两种方法。

(1)水准测量:地面沉降水准测量监测网络由地面沉降监测水准网、地面沉降监测GPS监测网和地面沉降监测地下水位(水量)动态监测网组成。

1)地形变地面沉降水准监测网:

a.水准网(点)布设原则:用从整体至局部,逐级水准测量的高程控制方法。一等水准网(环线)布设在沉降漏斗区;二等水准网在一等水准网环线内布设。在地面沉降明显的沉降漏斗区可选取剖面施测线,加密观测点。根据监测区的水文地质、工程地质特征和年均沉降量的大小,将整个监测区划分成若干个不同的地面沉降结构单元,并按其不同单元设置高程基准标、地面沉降标和分层沉降标(组)。

地面沉降标点的选布,用测区平均布点与沉降漏斗区加密布点相结合的方法,由沉降漏斗区向中心区,布点密度逐渐加大。在监测区内水准点布设密度应当满足监测工作的需要。在CO2地质封存工程中心区沉降点间距小于250m,中心区以外间距可设置为500~1000m,复测周期为1~3个月。

水准测量点不得选在下列地点:即将进行建筑施工的位置或准备拆修的建筑物上;地势低洼,易于积水淹没之处;地质条件不良(如崩塌、滑坡、泥石流等)之处或地下管线之上;附近有剧烈振动的地点;位置隐蔽,通视条件不良不便于观测之处。

各等水准点均应埋设永久性标石或标志。标石或标志埋设应满足下列要求:水准标石应埋设于表层土中,并选在便于长久保存和使用处、稳固耐久,防腐蚀,抗侵蚀,并能保持垂直方向的稳定、标石的底部应埋设于冻土层以下,并浇筑混凝土基础。

在监测区内水准点布设密度应当满足监测工作的需要。普通沉降水准点布设密度和复测周期见表7-31。

b.水准网监测要求:选用基岩水准点作为起算基点时,必须对基岩水准点进行稳定性评价,经验收合格后,方可选定使用;地面沉降水准测量前必须进行水准测量技术设计,在技术设计前收集有关水准测量的资料,水准测量的技术设计注意事项见DZ/T0154《地面沉降水准测量规范》;在技术设计过程中设计地面沉降水准测量路线图和有关图件,确定水准网,水准路线和剖面线,选定经过的基岩标和分层标,并在图上标明,编写技术说明书,技术说明书的注意事项见DZ/T0154地面沉降水准测量规范。

c.监测仪器选择:水准网(点)监测仪器型号选择不能低于表7-32要求。

表7-31 水准点布设密度和复测周期

表7-32 水准网(点)监测仪器

2)地形变地面沉降GPS监测网:

a.GPS网布设原则:GPS网的布设应视目的、精度要求、卫星状况、接收机类型和数量、测区已有的资料、测区地形和交通状况以及作业效率综合考虑,按照优化设计原则进行。

B级GPS网应布设成连续网,除边缘点外,每点的连接点数应不少于3点。优于B级GPS网的布设可为多边形或复合路线;各级GPS网中,最简独立闭合环或复合路线的边数应小于等于6;B级GPS网相邻点间平均距离等于70 km,优于B级网的相邻点间平均距离应根据实际情况适当缩短,相邻点最小距离可为平均距离的1/3~1/2,最大距离可为平均距离的2~3倍;B级GPS网点应与GPS永久性跟踪站联测,其联测的站数不得少于2站;新布设的GPS网应与附近已有的国家高等级GPS点进行联测。联测点数不得少于2点。

为确定GPS点在某一参考坐标系中的坐标,应与该参考坐标系中的原有控制点联测。联测的总点数不得少于3个。

b.GPS网监测要求:GPS接收机在开始观测前,应进行预热和静置,具体要求按接收机操作手册进行;GPS定位测量时,观察数据文件名中应包含:测站名和测站号,观测单元、测站类型(是参考站,还是流动站)、日期、时段号等信息,具体命名方法用GPS定位软件而定;各级GPS测量的基本技术规定和测量要求见GB/T18314《全球定位系统(GPS)测量规范》。

c.监测仪器选择与观测过程:用于地面沉降监测仪器的选择和观测过程,按照GB/T 18314《全球定位系统(GPS)测量规范》进行。仪器的选择,尽量保证在统一的情况下,用相同的测量仪器。

3)地形变地下水位(水量)动态监测网:

a.监测网布设原则:监测网点尽可能利用监测区内已有的地下水监测井,或作适当调整,或根据具体情况增建新的监测网点。

监测网(点)布设应以平行地下水流向为主,垂直地下水流向为辅;监测点(线)布设以能控制地下水补给、径流、排泄特征为原则。地下水降落漏斗区与地面沉降中心相符或基本相符时,以穿过漏斗中心的十字形布设监测点线,其长度应超过漏斗范围;当两者不相符时,监测网点的布置既要考虑地下水位降落漏斗,又要考虑沉降中心。

在地下水水位变化大的地段或上层滞水地段应布设地下水动态监测点;当有多层含水层时,必须分层设置监测井,对每层的水位、孔隙水压力及其相互之间的水力联系进行监测。

分层监测井应尽可能与分层沉降标孔对应观测;监测点的密度或间距,根据地下水降落漏斗的特征、地面沉降现状及监测需要而定;监测点位选定后,必须定名、编号,测定高程,标记在地形图上;监测井、孔应及时清淤,以维持正常监测。易被堵塞的钻孔,可在钻孔中安装过滤器进行监测。

在开展监测工作的同时,应搜集监测区内水文、气象等资料,如降雨量、蒸发量、地表水水位、水量及其与地下水的补、排关系。

b.地下水动态监要求:对地下水水位、水量的监测按照DZ/T0133—1994《地下水动态监测规程》和HJ/T164—2004《地下水环境监测技术规范》的有关规定执行;通过水位、水量的监测成果重点搞清地下水水位下降漏斗的形成特点及分布范围、发展趋势及其对已有建筑物的影响。

(2)差分干涉合成孔径雷达测量技术(D-InSAR):获取监测区不同时期的精确地面数字高程信息,通过信息提取与解译,获得地形变测量结果。

1)获取方法:干涉合成孔径雷达测量技术(InSAR)、差分干涉合成孔径雷达测量技术(D-InSAR)。

2)图像处理方法和模型:两种技术都是基于合成孔径雷达技术的图像处理方法和模型,是合成孔径雷达技术的应用延伸和扩展。

3)InSAR处理流程:以同一地区的两张SAR图像为基本处理数据,通过求取两幅SAR图像的相位差,获取干涉图像,然后经相位解缠,从干涉条纹中获取地形高程数据。

4)D-InSAR处理流程:利用同一地区的两幅干涉图像,其中一幅是通过形变前的两幅SAR获取的干涉图像,另一幅是通过形变前后两幅SAR图像获取的干涉图像,然后通过两幅干涉图差分处理(除去地球曲面、地形起伏影响)来获取地表微量形变。

5)监测频率:地表形变监测频率为一年。

6)监测范围:以灌注井为中心,外延100 km2。

(3)监测数据记录表:地面沉降或抬升监测涉及的记录表表格见表7-33,表7-34。

表7-33 地面形变记录表

表7-34 地面形变监测成果统计表

6.微地震背景值监测

通过微地震监测一方面考察CO2灌注工程可能引发的地质安全问题;另一方面考察CO2羽状体在深部储层运移和分布状况。

(1)微地震背景值监测布置方法:(1)网点布设满足精度要求;(2)明确灌注井和监测井地质结构和岩石力学性质;(3)明确CO2灌注量和灌注压力;(4)明确灌注量和监测井所处位置及环境噪声背景;(5)明确监测的深度。

(2)确定微地震监测系统的基本流程:(1)经验确定微震监测的矩震级范围为:-2.0~+3.5,可用经验公式计算出体变势和释放能量;(2)取应力降为经验常数,经验公式计算出拐角频率上下限;(3)根据震级范围、震中与传感器距离,振幅用经验公式确定动态范围等;(4)依据经济合理的方法确定出数模转换器的地点和其他性能参数;(5)依据经济合理的方法确定出系统数据传输和控制的通讯协议方式。

(3)监测方法:

1)地面高精度微震监测法:地面监测就是在监测目标区域(比如压裂井)周围的地面上,布置若干接收点进行微震监测。通过地表面以及在距地表约100m的浅钻孔中布设高密度微震监测台阵,系统能精确监测地表以下2000~4000m深度岩体裂缝和走向,由于系统安装在近地面,所以应用成本较低、不会破坏井。典型的检波器布置如图7-7所示。

图7-7 地面高精度微震监测典型的检波器布置图

2)井中高精度微震监测法:井中监测就是在监测目标区域周围临近的一口或几口井中布置接收排列,进行微震监测。井中微震技术用铠装通讯缆将三分量实时集检波器以大级距的排列方式、多极布放在压裂井旁的一个邻近井,井底对应储层深度,通过监测裂缝端部岩石的张性破裂和滤失区的微裂隙的剪切滑动造成的微震信号,经过分析处理得出裂缝方位、高度、长度、不对称性和延伸范围等方面的空间展布特征,经过矩张量反演等技术分析裂缝的性质和三维地应力场的情况。与同类技术相比井中微震在解释裂缝方位和几何尺寸方面可靠性高,典型布置如图7-8所示。

(4)微震监测系统构成:高精度微震监测系统包括硬件和软件两大部分(图7-9)。硬件部分包括检波器、数据集器、调制解调器、控制中心和计算机等;软件部分包括时间运行软件、波形分析软件、数据解释与可视化软件等模块。

图7-8 井中微震监测示意图(据密西西比CCS项目,2008)

图7-9 微震监测原理示意图

激光跟踪仪的性能

14年设计053H2G型护卫舰时,满载排水量为1661.5吨。而新型全封闭艏楼的“江卫”Ⅰ型因结构增重使标准排水量达1960吨。“江卫”Ⅰ型在“江湖”级基础上增加舰空导弹武器系统和改善了适航性,满载排水量增加到2250吨,成为中国第一种满载排水量超过2000吨的护卫舰。

053H2G护卫舰线型逐渐摆脱了中国系列护卫舰上的苏式舰艇设计风格,更接近欧洲的线型。《简氏舰船年鉴》介绍其长宽比大约为8.2,低于其他国家的护卫舰,用丰满的水线面和外飘的舰首和方楔形尾,《年鉴》称这种线型船体能够提供较好的抗纵摇能力,在高海况航行时不至于埋首过深,同时尾部有较大浮力用来平衡大型球鼻首声呐造成的向前纵倾。“江卫”Ⅰ型上安装有大型声呐,具有较强的反潜能力。“江卫”Ⅰ型水线面附近线型非常接近“江湖”Ⅲ型,不过外飘的舰首使舱室面积有所增加。

舱室增加的面积很多时候是用于安排被主要设备排挤的设备或装置,“江卫I”级也是如此,增加的改进型舰空导弹和作战指挥系统等主要相关设备主要集中在舰桥以及首楼舱室之中。作战指挥系统部分布置在舰桥,主要部分布置在舰桥下首楼舱室内。这种安排使得安装在舰桥和前桅上的设备信号传输距离最短,这对于改善雷达的波导和缆线传输信号等有很重要的影响。舰长能够在接近指挥舰桥的位置使用指挥系统,便于指挥和照顾观察航行情况,在系统失效的情况下能够迅速转换为用传统方式继续指挥控制舰只。在80年代初设计“江湖”Ⅲ护卫舰时,曾经加大了舰桥以增加安装设备空间,而“江卫”Ⅰ型设备较“江湖”Ⅲ增加很多,由于改进型舰空导弹发射装置非常笨重且体积庞大,只能截去首楼前部,将其布置在主炮后部的主甲板上占据了原来舱室空间,此外首楼前部顶上2门双联装自动37毫米舰炮供弹室和驱动机构占据空间较“江湖”Ⅲ上37毫米舰炮多,导致“江卫”级首楼舱室可用空间较“江湖”Ⅲ减少很多。“江卫”Ⅰ型将舰桥尺寸加大,弥补首楼空间的减少。舰桥前部用了类似英国21型护卫舰那样的圆弧造型,据称是为减小对雷达的有效反射面积。

“江卫”Ⅰ型的舰桥因为安排改进型导弹而被迫后移,导致舰桥到直升机库间的空间缩小近一半,反舰导弹只能横向布置。横向布置从70年代以来就是美国海军惯用的解决办法,逐渐成为现代水面舰艇导弹布置主流方式。这种布置好处在于导弹发射装置尾部对向一侧的海面,燃气不会横扫甲板,不干扰其他设备和武器的操作,也省去了大面积清洗加班的支出和劳苦,缺点是只能射击位于一侧的目标。“江卫”Ⅰ型也是中国海军第一种横向布置反舰导弹发射装置的水面舰艇。

年中国海军改装了1艘“江湖”I型护卫舰,去掉了后部的反舰导弹发射装置和火炮改装为直升机机库,试验满载排水量2000吨级护卫舰上配备直升机的可行性。这次改装的经验是直升机机库过高,使该护卫舰稳性降低。舰艇改进后进一步完善了系统,却降低了高海况作战能力,因此这种改进没有继续进行。设计“江卫”Ⅰ型,直升机库甲板被降低安排到了主甲板后段,作为主甲板的一部分,因此稳性较以前的“江湖”改型有很大的改善。“江湖”改之所以在主甲板后段上再搭建直升机起降甲板,主要原因是保留后甲板反潜作业平台,便于安装设备和武器。“江卫”Ⅰ型同样面临这个问题,但在直升机甲板下重新开设了开放的下甲板尾部平台,以便用来布置反潜设备和武器,有观点认为这个尾甲板平台靠近水面容易上浪。不过尾甲板平台离水面高度超过了037型猎潜艇的干舷高,037艇在南北中国海海区多数情况下并没有频繁发生上浪现象。护卫舰即便上浪也并不影响反潜和靠近水面的作业。

053H2G型舰体有较宽的水线面,宽方艉,舰艏折角,水线以上舰体外飘,低长宽比(8.2),舷边圆弧过渡;长艏楼,全封闭中央桥楼,钢质舰体,铝合金圆弧形上层建筑,其侧壁内倾。主桅杆为塔式桅和桁格桅混合结构。该型舰最为明显的变化是建造工艺的改进。在此之前中国建造的海军舰艇舷边钢板和甲板都是直角搭口后进行焊接,“江卫”Ⅰ型上则首次用了圆弧过渡。直角搭口虽然简单,但垂直的边板钢板需要高出甲板钢板以保证焊接面足够大,通常高出甲板的边板会阻挡甲板排水,以及产生无数类似角反射器的雷达信号。一些精细的焊接处理,切除了高度甲板的垂直边板余料,使侧板平齐于甲板,这样就导致搭口处理麻烦且浪费材料。圆弧过渡是在焊接时,使甲板和垂直舷板不直接搭接焊接,而是用小块圆弧钢板对接焊接连接两者,无需精细处理钢板接口处,又能避免直角搭接焊接产生角反射器效应和甲板积水问题。 冷战结束前欧洲护卫舰多数用全柴油机动力,其原因是欧洲海军主要遂行近海作战任务,作战对象首先是苏联海军潜艇,其次是水面舰艇。反潜作战要求中低航速,便于使用声呐系统,因此反潜护卫舰多数情况下是经济航速巡航。70年代设计建造的护卫舰已经全部配备了舰载直升机,遂行反潜作战时构成以直升机高速大航程和护卫舰低速安静搜索的体系。常规潜艇水下航速通常只在20节左右,在此航速下噪声很大,而低速和极低速航行时,噪声很小难以发现,核动力潜艇水下航速虽然可以达到30至35节,噪声极大,容易暴露位置。因此潜艇高速航行不仅能被护卫舰或直升机在远距离上探测定位,也将很快被舰载直升机追上,最终被迫终止高速航行,转而进行静默坐底或极低速机动。基于这种思想,西方认为护卫舰无需追求高航速。此外,70年代之前多数燃气轮机无论油耗和可靠性都不及柴油机,因此当时护卫舰大量用柴油机,只有美国海军护卫舰在用燃气轮机。

1982年“江湖”Ⅲ型护卫舰设计时用了刚刚鉴定的新型柴油机作为动力,改进的“江卫”Ⅰ型上依旧用燃-燃并车动力,总持续功率为24000马力,并大量用国产装备。

80年代设计建造的护卫舰开始用燃柴联合动力,部分用全燃动力。这其实是燃气轮机进步所至。美国海军大量装备的舰用LM2500燃气轮机平均油耗已经降到了单位马力每小时耗油170克,而输出功率相当的高速柴油机为155至190克。实际上国产柴油机油耗可能高于LM2500燃气轮机。“江卫”Ⅰ型柴-柴联合动力系统虽然能够满足使用要求,但绝非先进水平,对于当时的中国海军来说适用和来源稳定才是最重要的。柴油机的缺点是振动和中低频噪声难以消除,容易成为潜艇探测系统的定位信号源。现代潜艇都装备有水下发射的反舰导弹,能够在舰载反潜武器射程外开火猎杀反潜舰,因此安静性不仅是潜艇的生存要素,对水面反潜舰艇同样也需要降低噪声才便于捕捉潜艇信号,以及在冲入潜艇射击近界死角前不会遭到潜艇反舰导弹突袭。中国舰用柴油机组在安静性和油耗,以及稳定性和可靠性方面还需要不断改进。 对空搜索

水面舰艇防空系统包括其空情探测系统和武器系统两个方面。空情探测系统主要是雷达和光电探测系统,此外电子侦察系统也是重要的对空监视警戒手段。由于对不同距离上的目标探测波段不同,因此海军舰艇通常配备不同的雷达。“江卫”Ⅰ型的远程对空警戒雷达与苏联时期绰号“刀架”的P-8和P-10雷达非常相近,因此通常被称为“刀架”雷达。该雷达原本是50年代从苏联引进的“刀架”雷达的发展型号。护卫舰和驱逐舰上之所以用该雷达是因为其天线较轻,能够安装在单薄的小直径圆柱桅杆顶端,而且鱼骨般的八木天线风阻小,在各种气象条件下不会影响稳性。《苏联雷达装备手册》上介绍P-8“刀架”雷达对高空目标探测距离75千米,主要作为防空导弹系统的目标指示雷达。与其类似的517雷达最大探测距离达到了100千米左右。

该雷达最早出现在70年代末期的051型驱逐舰上,用来替代原设计中相对笨重的雷达。80年代中国开始用微处理器改进雷达信号处理分系统,据称该型雷达也在改进之中。从新型驱逐舰依旧配备该型雷达情况判断,这种雷达可能还在不断改进,以适应21世纪的作战需要。90年代以来中国陆基和舰基雷达系统技术有飞跃性提高,尤其是对UHF和VHF波段雷达的国际技术合作的开展,使得貌似老式P-10“刀架”雷达的517雷达具备了更强大的探测和抗干扰能力。据俄罗斯《ARMS》杂志报道,中国继续在新型舰艇上配备该型雷达不仅仅是满足于其性能的提高,而是出于反隐身飞行器的需要。美国《信号》杂志评论中国海军将雷达隐身飞行器视为主要威胁,在今后的新型舰艇上也会继续配备VHF和UHF波段的米波雷达。中国没有隐身飞行器作为研究雷达反隐身试验的样本,探测隐身目标的效果如何是一个谜。

现代水面舰艇通常将对低空和水面目标的探测雷达合二为一,因为超低空目标往往处于对海搜索雷达的扇形波束视场内,与水面舰船回波的区别是相位和速度频移不同,而且会出现镜像信号。经过信号处理前的超低空目标雷达信号往往显示是对称于海面的一对目标,因而有很多特征可以提供雷达处理机辨别。掠海飞行的低空和水面目标探测主要受地球水天线通视距离限制,直视距离在45千米左右。由于这类目标速度高,雷达最大探测距离小,因此需要较高的数据刷新率才能在尽可能大的距离上及时截获。“江卫”Ⅰ型配备的是转速较高的新型对低空和海面探测雷达,数据刷新率高达每分钟30次。从低空高速接近的目标闯入该型雷达最大探测范围后2至6秒就能够被可靠截获和识别。据法国汤姆逊公司称,中国产雷达技术很多来自于法国汤姆逊“海虎”雷达,有动目标指示和多普勒检测体制分离海面杂波和目标信号,尤其是多普勒检测对速度频移非常灵敏,正面投影很小的导弹也会被检测出来。早期中国海军水面舰艇雷达信号处理技术落后,造成回波信号中很多有用成分不得不被抛弃,从而大大降低了在复杂情况下的杂波中辨别目标的能力。“海虎”雷达测量精度较高,能够概略描绘目标水平轮廓,新型型雷达很可能同样具备这种能力。该型雷达天线用扭曲抛物面反射器和自动稳定基座,能够在高海况条件下保持对目标的高截获率。老式的这类雷达是薄板抛物面,需要靠反射器背面的风翼力矩平衡风阻惯量,而这种面结构不仅复杂和难以真正平衡风阻,还会造成较大的角反射器效应。而该型雷达为减小风阻,其天线反射器用的是网格结构,因此不仅省去风翼,还减小了角反射器效应和取得较好的转动惯量平衡。

舰空导弹

“江卫”Ⅰ型是第一种具有防空能力的制海型国产护卫舰,主炮与首楼之间的主甲板上安装有1座六联装的舰空导弹发射装置。虽然与“江东”型护卫舰用的是同一种半主动制导舰空导弹,但是发射装置区别很大。“江东”型舰用双臂托架式旋转发射装置,优点是便于快速重复装弹,但维护性差,发射准备时间稍长。“江卫”Ⅰ型舰没有打算在舰上设置弹库,而是用一次性发射包装筒安装在发射架上。“江东”级舰的实践证明,在2200吨级的舰上很难挤出足够的空间安排弹舱和装填机构。直接将舰空导弹装在密封的发射容器中布置在发射架上,能够减少占用空间和加快射击准备时间。做到这点的前提是需要解决导弹的长期存储和免维护性,“江卫”Ⅰ型型舰上舰空导弹的这种存储发射方式表明中国已经解决了导弹存储问题,且改进的舰空导弹可靠性相当高。惟一不足的是发射包装筒直径太大,导致装弹数量只有6枚。造成这个现象的原因是没有用折叠弹翼,导弹是全翼展状态悬定在筒内。为支撑射筒,发射装置尺寸需要做的笨重庞大,带来的问题是需要较大功率的驱动系统才能保证发射装置的快速性。

舰空导弹的制导雷达是安装在主桅中部平台上、被称为“雾灯”的雷达。该雷达有一个圆抛物面反射器天线和喇叭天线,用单脉冲和差比幅测角体制。抛物面天线主要用于对目标的跟踪,喇叭天线则为连续波天线,为导弹提供烧穿信号。两个天线电轴平行且非常靠近,当跟踪天线对准目标时,照射天线也就瞄准了目标。另一种观点是舰空导弹用了脉冲连续波制导方式,无需喇叭天线提供烧穿信号,由跟踪天线同时提供制导烧穿信号,因此在跟踪天线右侧位置安装的是光电跟踪装置。

舰空导弹是一种用于掩护点状目标的舰空导弹武器系统,最大射程在10千米左右,美国海军称这类射程的舰空导弹为点防空导弹。防空系统理论中定义点目标为“一枚当量适当的常规命中就能被毁伤的目标”,保护这类目标的防空导弹武器通常无需强调大射程,更注重反应快速和短间隔连续射击,而且需要在掩护面状目标的防空武器系统协同下遂行作战。海军水面舰艇是外形尺度非常大,具有点状目标属性。“江卫”Ⅰ型护卫舰配备点防空导弹非常合理,但是作为舰队防空体系中的一环,只能配备在中程舰空导弹杀伤区纵深威胁方向上,构成舰队近区更为严密的相互重叠的防空火力杀伤扇面。

防空作战时的“江卫”Ⅰ型护卫舰是集导弹和防空火炮于一体的平台,与1个弹炮合一的防空连火力相当,却有更为完善的雷达情报系统和高速机动能力。对空型和对海型雷达视场覆盖了从水面到高空的空域,任何目标只要进入其中一种雷达的探测范围就会被很快截获。然而这两种雷达是二坐标雷达,只能提供目标方位和距离的跟踪参数。美国海军安装点防空导弹的驱逐舰作战过程是舰上的2部空情雷达截获目标后,将数据传往舰上作战指挥系统,由作战指挥系统向舰空导弹系统分配目标,并引导制导雷达对准目标方位后向导弹系统交班。制导雷达进行俯仰搜索直到截获目标,在没有截获目标进入制导精确跟踪前,作战指挥系统会不断修正制导雷达俯仰搜索空域。“江卫”Ⅰ型护卫舰的对空作战过程大致与此相同。

在中国海军两艘053K型护卫舰黯然退役之后,红旗-61的改进型以6联装发射架的形式出现在053H2G型护卫舰的前甲板上。其巨大的外形让西方国家一度误以为是反潜导弹发射装置,实际上这是由于红旗-61用了“+-X”且不可折叠的弹翼布局才使得这种射程不过十几公里的导弹有如此巨大的发射筒 。

防空火炮

与所有的舰空导弹一样,“江卫”Ⅰ型上安装的舰空导弹也存在射击近界死区和火力通道射速限制,而目标越接近护卫舰,要求拦截武器发射速度越快才能在安全距离外击毁目标。高射速舰炮历来是近区杀伤的最有效的武器,“江卫”级上配备了4座37毫米双联装自动炮作为近程防御武器。37毫米舰炮由安装在直升机机库顶上的火控雷达提供跟踪目标运动要素,37毫米炮和炮瞄雷达构成单个目标通道和多火力通道的全天候射击单元。此外光学指挥仪或光电跟踪系统构成另一个目标通道,能够分担一个方向的火控。

上世纪80年代初期中国对意大利的“布雷达”双联装40毫米自动舰炮进行过详细的研究,37毫米舰炮很大程度上受“布雷达”40炮设计影响,但由于技术水平局限,“布雷达”40炮最精良的无弹链供弹系统却没有被37毫米舰炮用。弹链供弹的37毫米舰炮难以进行快速弹种转换,只能取在弹链上交替安插不同弹种的传统形式发射多种。在“江卫”Ⅰ型上4座37毫米舰炮布置形式为舰桥前首楼顶部2座,直升机机库两侧各布置1座。舰桥前2座各具有前向和舷侧射界,直升机库两侧的37毫米舰炮只有舷侧射界,这种布置方式使得射击任何舷角上的目标都能够有两个火力通道同时提供服务。除中国和意大利海军外,很少有其他国家的海军在护卫舰上用单一的37毫米及以上口径舰炮作为近界杀伤手段。与意大利“布雷达”40毫米舰炮一样,中国37毫米舰炮也用近炸间接命中毁伤机制摧毁闯入近界的目标,但对这种毁伤机制效果存在争议,尤其认为对超音速反舰导弹效果不佳。

防空作战

中国海军防空作战包括舰队防空和延展沿海防空纵深。由于“江卫”Ⅰ型护卫舰配有舰空导弹,因此单艘舰就能够承担1988年需要由“江东”和“江湖”Ⅲ两种舰完成的全部任务。中国大陆沿海城市分布的地理特殊性,需要建立濒海威胁方向防空区。延展防空纵深通常指将防空舰只部署在沿海重要目标的威胁方向外海,在威胁濒海方向上构筑一定的防空纵深。与陆基防空阵地相比,海军舰只能够凭借高速机动迅速转移目标。用海岸雷达和编队中担任雷达哨的舰只及潜艇低空警戒相结合,其他舰只不断进行无线电静默下的阵位机动,来袭作战飞机很难测定和判断舰空导弹杀伤区所在。在台湾***陈水扁宣称要“决战境外”的情况下,这种作战模式对于遏制台湾空军袭击上海、香港等城市具有很重要的作用。

中国海区独特的地理条件使得部署在大陆沿海基地的岸基战斗机作战半径能够覆盖绝大多数海域,因此岸基航空兵战斗机能够在绝大多数海区为编队提供空中掩护。2001年1月在引进的俄罗斯“现代”级驱逐舰服役前,中国海军没有区域舰空导弹,岸基航空兵承担主要的远程拦截,在部署有远程地空导弹系统的海岸附近,护卫舰能够得到岸基区域防空火力的支持。2002年《当代海军》杂志刊登了“现代”级驱逐舰与数艘护卫舰编队航行的照片,其中至少有2艘“江卫”Ⅰ型护卫舰伴随。

衡量防空作战能力的一个重要指标是作战指挥自动化程度。在需要争分夺秒的防空作战中,分发和汇集各种舰载传感器急速变化的海量数据,及时控制和调度各种武器系统等,是最至关重要的能力。这些过程取人工操作效率极其低下,在现代精确制导武器为主的袭击战中,很可能根本打不中来袭目标,因而需要依靠自动化作战指挥系统来解决。“江卫”级护卫舰配备的指挥系统很可能是“江湖”Ⅲ上的改进型。这种作战指挥系统性能很可能与欧洲80年代系统相当,足以控制“江卫”Ⅰ型舰上的所有防空武器系统。美国《海军》杂志认为,“江卫”Ⅰ型护卫舰防空作战的主要问题是37毫米自动炮毁伤机制的有效性。

反舰反潜

中国海军在70年代就开始发展轻型的反舰导弹。1982年马岛作战说明诸如“飞鱼”一类的反舰导弹足以摧毁一艘驱逐舰。这场战争最大的收获是使科研管理部门明白了轻型反舰导弹不比笨重的“上游”一号导弹效果差,从而加快了“鹰击”导弹装备水面舰艇的进度。尽管“江卫”Ⅰ型护卫舰吨位不大,却配备了6枚“鹰击”8A反舰导弹,齐射能力相当于051型驱逐舰。不过令人费解的是2组三联装导弹发射箱呈并排横置,而不是像美国海军那样堆叠,如果取堆叠可以使导弹携带量增加到8枚。

中国海军强调水面舰艇袭岸作战能力,因此舰炮通常保持100毫米或以上口径,并且要求具备一定的射速。“江卫”Ⅰ型安装的是双联装100毫米自动舰炮,最大射程达20千米以上,具有85°的高射射角。理论上能够对空射击,但是配备的雷达只能提供方位和距离数据,不能像37毫米炮的341型火控雷达那样测量三维空间的目标位置。“江卫”Ⅰ型作战指挥系统似乎能够提取其他雷达的测量数据,供100毫米火炮射击指挥仪解算诸元,因此在作战指挥系统控制下,79A炮可能具有一定的对空射击能力。

中国海军声呐系统是最为神秘的系统,很少有公开报道。据美国《信号》杂志报道,“江卫”Ⅰ型护卫舰的球鼻首声呐为SJD-5B型,其推测可能是数字化了的老式SJD-5声呐,便于与数字化作战指挥系统连接。在球首舰壳中,还安装有SJC-1F型侦察声呐和SJX-4C型通信声呐。这2种声呐同样是老式声呐的数字化改进型。80年代中期,正值中国大量普及微处理器改造老式设备的时代,很多所谓数字化设备不过是在传统的机电设备上增加微处理器监测装置,这些设备之间传输通常用低速的军用或工业总线。即便如此,数字化接入也使中国装备水平有了革命性的飞跃。

1986年之前中国海军护卫舰主要反潜武器是两座1500五联装火箭深弹发射器。护卫舰需要使用声呐保持与水下目标信号的接触,不断机动逼近,直到与目标距离小于1500米才能齐射火箭深弹,而现代潜艇却能够从数十甚至数百千米外的水下发射反舰导弹打击护卫舰。在护卫舰接近到1500米距离前,被追击的潜艇完全可以发动反击,或者升出通信天线等,召唤远方友邻艇发动袭击。80年代中期从意大利和美国分别引进轻型反潜鱼雷后,这种状况开始改观。“江卫”Ⅰ型护卫舰远程反潜武器是直-9直升机,能够携带2枚鱼-7型轻型反潜声自导鱼雷,在护卫舰300千米范围内遂行反潜作战。这个距离超出多数潜射反舰导弹射程,能够有效的压制潜艇袭击。

科技发展:利大还是弊大?(作文)

激光跟踪仪是一种空间大尺寸三维坐标精密测量的高端几何量仪器,不仅可以对静止的空间目标进行高精度三维测量,还可以对运动的目标进行跟踪测量,是大尺寸精密测量的主要手段。

激光跟踪测量系统能跟踪某一目标的运动,这一被跟踪的目标称为目标镜,是系统中很重要的组成部分,相当于传统三坐标测量机的测头。工作时,将目标镜与被测要素接触,系统便会测量其中心点的三维坐标,通过被测要素与目标镜中心点坐标之间的关系获得被测要素的三维空间位置和姿态信息。

中图仪器激光跟踪仪主要有以下显著特性:

1、? 精准、强大的跟踪测量系统

(1)绝对激光测距(ADM)和干涉测距(IFM)融合技术,将干涉测长的及时修正速度与绝对测距功能相结合,保证测量的极佳精度,并实现挡光恢复。

(2)目标球自动锁定功能,在断光时会在小范围内自动搜索到目标球,完成断光续接,自动锁定目标球,全过程不需人为操作,提高测量效率。

(3)配备智能化测头G-Probe,不仅能够精确定位空间点的三维坐标,而且能够对目标的空间姿态进行检测,实现3D到6D测量。

(4)内部集成智能CCD相机和实时图像处理技术,具有自动变焦能力,实现大范围的测头快速搜索。

(5)隐藏特征、狭长特征、曲面测量等配备不同测头,增强系统探测能力。

(6)主动式控温系统和激光头全封闭设计,使得跟踪站主机内部温度恒定和均匀分布,尽可能降低温度漂移,保证仪器的长时间稳定。

(7)一体化气象站技术,自动读取及更新环境参数传感器,确保测量数据的实时修正。

(8)稳定、便捷的三角底盘确保稳定的测量条件,避免环境震动带来的精度损失。

(9)设备与电脑之间可以通过无线WIFI连接,方便现场使用。

(10)高速测量数据输出,输出速度≥1000点/秒。

(11)IP54防护等级,保证主机免受灰尘和其他污染物的进入,实现防尘、防水,环境适用性强。

(12)内置高精度电子水平仪,水平仪精度≤1秒。

2、? 高精度、防破裂反射球

(1)精确、耐用、高强度、防破裂的反射球,配有标准型和高精度型等多种类型的反射球。

(2)不同的测量距离适用不同规格的反射球。

(3)中空一体式设计,保证长期使用的稳定性,球心最高精度达到±2.5μm。

(4)光学玻璃角偶反射球体,用于获得理想的测量结果。

(5)反射球用高等级球体,球度为±0.5μm。

(6)可更换的窗口保护盖设计,确保反射光学装置保持清洁。

3、? 智能化的手持无线测头G-Probe

(1)测量范围大,测量半径≥10米,俯仰方向≥±45?,角摆≥±45?,自转≥360?。

(2)使用轻便灵活,内置电池,无线通讯,完全无线操作。

(3)测量时带有光学和声音提示,将要断光时手持测头指示灯会变黄,点时会发出提示音。

(4)具有连续测量模式,每秒点速度≥1000点/秒。

(5)具备测头自动识别功能,测量软件能够自动识别测针类型,使用时不需要重新选择测针类型,避免误操作。同时更换测针或者改变测针测量方向、姿态时不需要补偿和重新校验,提高操作便利性。

(6)根据测量需要可选用不同长度的加长杆和不同大小的测头进行随机组合,测量更方便。

(7)自动锁定技术,操作者只需要关注测量的工件,而无需关注激光的位置,提高操作便利性。

4、? 智能化的非接触式手持激光扫描仪G-Scan

(1)激光束自动跟随锁定G-Scan,提高操作便利性。

(2)测量范围大,测量半径≥10米,俯仰≥±45?,角摆≥±45?,垂直≥±45?,自转≥360?。

(3)根据目标反射比自动对激光功率进行控制与优化,基本可对任何目标均进行稳定测量,测量目标从黑色橡胶到光滑的金属表面。

(4)跟踪仪自动识别G-Scan,支持测量时无缝切换G-Probe或反射球。

(5)双色引导、声音、触觉及指示灯自动反馈提示系统,方便用户把握G-Scan扫描距离,判断挡光状态,从而集出最可靠的扫描数据,提高用户体验。

(6)仅需一根网线连接,方便手持式操作。

(7)扫描频率高达120线/秒,最高样率高达20000点/秒,节省时间,快速扫描大面积工件并输出有效数据。

(8)大扫描范围,平均扫描距离86mm,扫描线宽90mm,扫描深度78mm。

5、? 机械控制探测器G-Mac

(1)激光束自动跟随锁定G-Mac。

(2)测量范围大,测量半径≥10米,俯仰方向≥±45?,角摆≥±45?,自转≥360?。

(3)简易接口连接,便于安装在机床或机器人上,重复性高、精度高。

(4)设置多个反射球座,为目标点定向,便于校验和点位。

(5)对环境光不敏感。

(6)声音及指示灯反馈系统对上电、视场、距离范围等仪器状态进行提示。

(7)每秒点速度≥1000点/秒。

6、? 功能丰富的三维空间尺寸测量软件

(1)测量软件系统可在Windows 7操作系统上运行,具有图形显示模块,以图形的方式显示数据及测量结果。

(2)具有数据分析功能:可利用静态和连续点的方式集数据,可直接测量得到点、线、圆、平面、柱、球、圆锥等,提供点线面、两点以及最佳拟合等创建坐标系的方式,并可对坐标进行平移、旋转等操作。

(3)测量软件可用坐标定位创建3D数据;

(4)具有图形显示功能提供2D和3D视图,可对图形进行平移,旋转、缩放操作,提供多种图形文件接口,可直接进行测量值与设计值比较。

(5)检验结果及报告可以文件或图形形式在线记录下来或打印出来。

(6)可实现几何元素的评价,包括:直线度、平面度、圆度、圆柱度、圆锥度以及圆环和球面等。实现相对基准几何要素真实位置度的评价:平行度、垂直度、角度、位置度、同轴度、同心度等。

(7)测量软件既有良好的正向测量功能,又具有优秀的逆向工程功能。具有完善的产品检测方案:图形工作界面;内嵌高级GA&T技术;多样性的切边分析;实现虚拟装配及干涉分析;实现组装间隙分析及调整;实现扫描数据与CAD的比较。

7、? 全面的机器人性能检测分析软件

按照ISO 9283工业机器人性能规范及其实验方法完成机器人性能检测,检测内容包括:

ؠ 机器人位姿准确度

ؠ 位姿重复性

ؠ 多方向位姿准确度变动

ؠ 距离准确度

ؠ 距离重复性

ؠ 位置稳定时间

ؠ 位置超调量

ؠ 位姿特性漂移

ؠ 互换性

ؠ 轨迹准确度

ؠ 轨迹重复性

ؠ 拐角偏差

ؠ 轨迹速度特性

ؠ 静态柔顺性

8、? 专业的机器人参数校准软件

根据机器人的D-H参数建立机器人校准数学模型,进行机器人零位校准,机器人D-H参数校准,机器人TCP中心点精度校准。在不改变现有机器人任何结构和硬件尺寸的条件下,通过机器人校准标定软件有效的提高机器人绝对位姿精度。

南极资料

利大:从许多方面表现出来:从医学说:各种现代化技术的出现,激光手术等,挽救了许多人的生命;从天文方面:人造地球卫星,宇宙飞船的发明,比如气象卫星,能精确的预测未来一段时间内的天气变化,为人类的生产生活提供了方便;从人类生活方面:各种电器使人们生活舒适,比如空调,冬暖夏凉,,;当然,科学的进步不可避免的伴随着负面影响,但有利的一面毕竟占着绝大部分。

从有了网络,就有了上网的人;有了上网的人,便有人说上网的利弊。今天,作为一个大学生,我是如何看待大学生上网的呢?我觉得应当一分为二的看。

网络最初是运用于企业的,用来查阅公司所需的资料,也用来洽谈生意。这时的网络尚未普及,可是,它的作用是积极的。此时的网络除了尚不完善外,我想还没有什么利弊之分。

随着技术的提高,网络日趋完善,也渐渐普及了。为了更适应大众的需要,有了网络游戏,有了QQ,有了各种各样的版块。于是,上网的人更多了,当然有大学生。大学生上网,理由是多种多样的。有的为了寻找一位网友以打发时间;有的为了网络游戏而不分昼夜;有的为了网上**以此来“充实”生活。当然,也有为了学习的。我就亲耳听说一个建筑系的学生为了画图而包了两次夜。暂不说他包夜的行为是否不当,是否于身体不益,单说他对网络的利用,他在利用网络。我不得不插一句,何为“利用”呢?我觉得,在这,利用不是一个贬义词,而是一种积极的有效的运用。在科技日益发达的今天,借助于电脑,利用于网络,可以做成许多过去不能做或不易做的事。这是利?是弊?

作为一个旅游系的学生,我也是常上网的。在网上,可以看到很多有关旅游的信息。有景点的介绍,有旅游信息的发布,有国家对旅游业政策的公布。这些,可以说是最新、最快的。对于旅游业这样一个敏感的行业来说,早一步得到信息便意味着早一步抓住机遇。这是利?是弊?当然,网上也不全是可靠的信息,也有谣言,有谬论,如果不加辨别,一概纳接受,并且因此而酿成巨大的失误。这又是利?还是弊呢?

网络是四通八达的,上了网,可以认识很多人。本地的、外地的、中国的、外国的,当然也会有好人、坏人。上了网,有了网友,互通有无,彼此相互联络,提供彼此意见、建议,建立一种良好的网上友谊。这是利?还是弊?整天沉迷于网上聊天,不上课,什么事也不干,只为了网上冲浪,与网络那端的人虚无缥缈地扯上半天,最后还有可能误入歧途。这是利?是弊?

都说网络奇妙,它能在瞬息之间把你想知道的东西呈现出来;可以搜索到一本你一直想找但苦觅不着的老版杂志;可以搜索到一些书本、报刊上还未出现的前沿知识。你可以用它来丰富自己,真正达到一种不出门就知天下事的境界,达到一种一台机便知前沿科学的境界。这是利?还是弊?也有这样的一种人,他们有着卓越的网络知识,利用网络来发财,一种不义之财。当然,这里的利用就不是我前文所提到的利用了,这也是一种运用,不过是一种具有破坏力的运用。如此说是利?是弊?

其实,网络本无利弊,利弊在于上网之人。学了马哲,知道人应当发挥自身能动性,上网也是如此。有时,利与弊只一线相隔,单看上网之人是如何把握的,是如何发挥自身能动性的。

如今,大学生上网已是一种趋势了,也可以说是一种必然的局面。利弊仍有人说,可如何把握利弊不是掌握在自己手中吗?

弊大:上面说道我们每个人的眼光都看的更高了更远了,这就使得我们看到是只是远处了高出的事物,去探索去追求,忽略了眼前的该做的,就像历史上那些想找长生不了的一些君主们一样,药物是拿来治理疾病的,结果他们去盲目的投资去为了达到一些不可能实现的东西,结果害了自己也害了民众,就有了人民现在在**里看到的宏观场面了,让人心寒的帝王陪葬和那些所谓的世界奇迹。科技的发展的同时带给人们的是便利,同时也带来了灾难。利:我们可以去我们想要去的地方,人们在不断的探索,在未来可能回连《太阳中心》学会被推翻。在科技发展进步的现在没个人可以享受到那些历史人物所享受不到东西,每个新人对这个世随着经济的发展、人民生活节奏的加快和生活水平的提高,塑料的用量与日俱增。1996年,我国的塑料包装用量达243万吨,年平均增长率超过20%,特别是城市、主要交通沿线、旅游景点的垃圾中塑料废弃物迅速增加。

据调查,北京的生活垃圾年产量已达300万吨,其中废塑料约占3%,年增长率达48%。沿海地区城市的垃圾中塑料成分更高,达8-10%。这些废塑料在垃圾中占的比例若以体积计算,已达三分之一以上,而且大大增加了垃圾处理的难度和费用。

由于废塑料几百年都难以降解,若丢弃在自然环境中,会给蚊子、苍蝇和细菌提供生存繁育的温床;若埋藏在地下,则容易污染地下水,妨碍植物根系生长,破坏土壤品质,影响作物收成;若用火焚烧处理,将产生多种有毒气体。“白色污染”已成为当前危害我国社会环境的一大公害,严重阻碍了我国

经济和环境的可持续发展。

目前我国一次性餐具的年消费量约100亿只,主要为发泡塑料制品,使环境破坏。对自然的危害:

和我们使用的任何一种工业产品一样,空调必然会给我们的环境带来一定的负担。几年前,空调对自然的影响主要集中讨论在制冷剂对地球臭氧层的破坏上,但是这些年,由于制冷剂更新行程的发展,这已经不是主要因素了。未来空调对自然的影响还是体现在能耗这个领域,空调能耗已占我们生活和工业总能耗中很大的比重。能源的开材和给大气环境释放大量的热量,己以给我们的自然环境响成的很大的负担,这才是我们长期以来要解决的重大问题。

电脑:因为电脑,有了网络,有了网络游戏。所以,青少年无法自拔,荒废学业,无所事事。

汽车:人口膨胀,如果每人一部汽车,人类还有生活空间么?

空调:降低了人对自然环境的适应能力,减小了免疫力。

这个辩题我觉得最重要的不是列举科技给人类带来的种种坏处,因为如果你的眼睛只是盯着坏处的话,那么对方就很可能抓住这一点攻击你们:对方辩友,你们总是列举科技的种种坏处,似乎科学技术的发展给人类带来的只有灾难,那为什么我们现在还强调科学技术是第一生产力?为什么人类还要继续发展科学技术呢?

记得有这么一句话:科技是把双刃剑,一方面能够砸烂愚昧和落后,另一方面也可能带给人类无尽的灾难。这个时候我们强调科技给人类带来的痛苦与灾难正是为了这把双刃剑能够最大程度发挥它的正面作用造福人类而不是相反。所谓良药苦口利于病,这是因为对于科技理性而全面的思考才能够使得科技始终在人类的掌握之下不会反过来祸害人类。

结论:科技的发展固然重要,但不能在能合理正常使用的前提去发展,发展首先得净化思想,只有没个人的思想和心灵得到发展和提高了,所开发出来的高科技开能永久的有益于人类的发展,自然的和谐!

南极大陆

南极大陆是指南极洲除周围岛屿以外的陆地,是世界上发现最晚的大陆,它孤独地位于地球的最南端。南极大陆95%以上的面积为厚度惊人的冰雪所覆盖,素有“白色大陆”之称。在全球六块大陆中,南极大陆大于澳大利亚大陆,排名第五。

从字面上看,南极就是地球的最南端,但实际上,南极这个词

南极大陆

有多种近似含义,例如:南极洲、南极点、南极大陆、南极地区、南极圈等。按照国际上通行的概念,我们一般把南极圈以南的地区称为南极,它是南大洋及其岛屿和南极大陆的总称,总面积约6500万平方千米。在极圈内会有极昼和极夜现象,同时,极圈也是划分温带与寒带的界限。

南极洲的面积

南极洲包括南极大陆及其周围岛屿,总面积约1400万平方千米,其中大陆面积为1239万平方千米,岛屿面积约7.6万平方千米,海岸线长达2.47万千米。南极洲另有约158.2万平方千米的冰架。南极洲的面积占地球陆地总面积的十分之一,相当于一个半中国大。

南极不属于任何国家

从19世纪20年代起,到20世纪40年代,各国探险家相继发现了南极大陆的不同区域,从而为本国对南极提出主权要求提供了依据。接着,就有英国、新西兰、澳大利亚、法国、挪威、智利、阿根廷等7个国家的先后对南极洲的部分地区正式提出主权要求,使这块万年冰封的平静的大地笼罩上国际纠纷的阴影。

根据1961年6月通过的《南极条约》,冻结了以上7国对南极的领土主权要求,规定南极只用于和平目的,可以说,南极现在不属于任何一个国家,它属于全人类。

南极大陆的特点

我们都知道,去南极是十分不容易的,因为南极大陆是最难接近的大陆。与南极大陆最接近的大陆是南美洲,它们之间是0千米宽的德雷克海峡。南极大陆与其他大陆不仅相距遥远,而且周围还为数公里乃至数百公里的冰架和浮冰所环绕,冬天时浮冰的面积可达1900万平方千米;即使在南极的夏天,其面积也有260万平方千米;南极大陆周围海洋中还漂浮着数以万计的巨大的冰山,为海上航行造成了极大的困难和危险。

地球上最高的大陆不是拥有青藏高原的亚洲大陆,而是南极大陆。地球上其他几个大陆的平均海拔高程为:亚洲950米,北美洲700米,南美洲600米,非洲560米,欧洲最低,只有300米,大洋洲的平均高度还不甚清楚,估计也不过几百米。然而,南极大陆,就其自然表面来说,其平均海拔高程为2350米,比其他几个大陆中最高的亚洲还要高得多。但是,如果把覆盖在南极大陆上的冰盖剥离,它的平均高度仅有410米,比整个地球上陆地的平均高度要低得多。

世界上最为寒冷的地区

由于海拔高,空气稀薄,再加上冰雪表面对太阳能量的反射等,使得南极大陆成为世界上最为寒冷的地区,其平均气温比北极要低20度。南极大陆的年平均气温为零下25度。南极沿海地区的年平均温度为零下17~20度左右;而内陆地区为年平均温度则为零下40~50度;东南极高原地区最为寒冷,年平均气温低达零下57度。到现在为止,地球上听观测到的最低气温为零下89.6度,这是1983年7月在新西兰的万达站记录到的,在这样的低温下,普通的钢铁会变得象玻璃一般脆;如果把一杯开水泼向空中,落下来的竟然是一片冰晶。

南极的寒冷首先是与它所处的高纬度地理位置有关,由于高纬度地理位置,导致了在一年中漫长的极夜期间没有太阳光。同时,与太阳光线入射角有关,纬度越高,阳光的入射角越大,单位面积所吸收的太阳热能越少。南极位于地球上纬度最高的地区,太阳的入射角最小,阳光只能斜射到地表,而斜射的阳光热量又最低。再者,南极大陆地表95%被白色的冰雪覆盖,冰雪对日照的反射率为80%一84%,只剩下不足20%到达地面,而这可怜的一点点热量又大部分被反射回太空。南极的高海拔和相对稀薄的空气又使得热量不容易保存,所以南极异常寒冷。

地球上的风极

一般来讲,只有在大洋上热带风暴(台风)可以达到12级,但是在南极,12级以上的暴风却是家常便饭。南极大陆是风暴最频繁、风力最大的大陆,风速在每小时100千米以上的大风在南极是经常可以遇到的。南极大陆沿海地带的风力最大,平均风速为每秒17~18米,而东南极大陆沿海一带风力最强,风速可达每秒40~50米。在法国的迪尔维尔站曾测到每秒100米的大风,相当12级台风风速的3倍,而它的破坏力相当于12级台风的近10倍。这是迄今为止世界上记录到的最大的风。因此,南极又被称之为“风极”。

南极风能!除了严寒之外,狂风则是科学考察人员在南极所遇到的另外一个凶恶的敌人。狂风会很快带走人体的热量,使人发生冻伤甚至冻死事故。极夜的风暴,其速度有时超过每秒4 0米,比1 2级台风凌厉得多。此时若有人身置户外,便会有生命之虞。人们难以忘记,1 9 6 0年1 0月1 0日下午,在日本昭和站进行科学考察的福岛博士,走出基地食堂去喂狗,突遇每秒3 5米的暴风雪,从此再没有回来。直到1 9 6 7年2月9日,他的保存完好的尸体,居然在距站区4 . 2公里处出现!

编辑本段南极大陆上的冰

南极大陆被冰覆盖

虽然南极是冰雪的宝库,但是单从降水量来看,南极大陆却是最干燥的大陆。南极大陆的空气异常干燥,沿海地区的年平均降水量只有30~50毫米,不到有我国沿海地区降水量的二十分之一。南极内陆地区的年降水量甚至还不到5毫米,南极点的年平均降水量仅有3毫米,与非洲的撒哈拉大沙漠差不多。

另一方面,南极大陆又是最荒凉的大陆,是唯一没有任何树木的大陆,除了在南极半岛最北端可以看到3种开花的小草之外,其他地方根本看不到绿的颜色,只有在沿岸地区有少量的苔藓和地衣等低等植物;南极大陆没有陆生的脊椎动物,为数极少的蚊虫、蜘蛛则算是陆生动物中的庞然大物了。由于南极大陆降水量很小、满目荒凉、动植物种类稀少等原因,有人干脆把南极大陆称为“白色的沙漠”。

南极大陆面积是1400万平方千米,其中95%的面积被冰盖覆盖,不难计算出来,南极大陆被冰覆盖的面积大约有1330万平方千米,这个大冰盖就象一顶巨大无比的帽子,把南极大陆大部分地方捂得严严实实,由于它的存在,竟然把南极大陆的地壳压得凹陷下去,以致于许多地方被压得低于海平面,设南极冰盖一旦融化,西南极大陆会变成汪洋大海中的一些岛屿 

南极大陆95%以上的面积为巨厚的冰川所覆盖,只有在南极大陆边缘区域有季节性的岩石出露,其余的绝大部分都覆盖这常年冰雪。冰的平均厚度为2000米左右,最厚的地方达4800米,形成了一个巨大的冰盖,冰雪总体积为2800万立方千米。这些冰是由很纯的淡水组成的,所包含的淡水约占全世界淡水总量的72%,就其体积来说,约占全世界总冰量的90%以上,构成了地球上最大的淡水宝库。如果这些冰完全消融,全球平均海平面将升高55~60米,这对人类的生存将会构成严重的威胁。

流动的冰川

地球上所有的冰川都是流动的冰。由于南极冰盖本身的巨大压力,使得冰层缓慢地从中心高原向四周运动,其速度一般为每年几米到几十米,冰盖的厚度从中心高原向沿海地带是逐渐变薄的。像这样的运动速度,大陆中心的一块冰雪耍经过多少年才能流进大海呢?如果有兴趣的话,不妨计算一下。南极大陆的冰岸亦以每年200m的平均速度向大洋方向移动,冰川的边缘经常断裂,其结果形成了冰山。同时,也导致岸线经常在相当长的距离上后退数十公里。

大陆基岩地形对冰的形态和运动有很大影响。缓慢流动的冰层遇到高大山岭阻挡,就流人山谷之中,冰在山间谷地中形成流动较快的冰河,这就是山地冰川。南极大陆巨大的冰川在本身的重力和压力的联合作用下,加上极地终年不息的狂风的推动和冰融水的润滑,夜以继日地发生流动。尽管一朝一夕不容易察觉它的变迁,然而在历史的长河中,它却是一股改变南极面貌的巨大力量。

南极冰盖上的冰裂缝南极冰盖的冰在重力作用下由高向低运动,也就是通常所说的冰川流动,当遇到底面凹凸不平时会使流动的速度产生差异。在底面凸起时,冰盖表层的冰运动速度比下面的冰要快一些,于是形成了冰裂缝。因此,我们知道,冰裂缝的出现是有规律的,而且经常成组出现,对南极冰盖考察人员和装备构成了严重的威胁。

没有哪一个国家的南极冰盖考察队会忽视冰裂缝,即便如此,在冰裂缝发生危险的事例也经常发生,人员和车辆掉下冰裂缝时有发生,造成车辆和人员的损失。南极冰盖上的冰裂缝经常宽达几米,深不可测,用肉眼可以很清除地看出来的只需绕道行走就行了,可是许多冰裂缝上面覆盖着厚薄不一的积雪,同正常的雪面没有任何差别,用肉眼根本看不出来,当人员或车辆行进到它上面时,积雪崩塌,人员或车辆就会掉落下去。当上面的积雪较厚时,甚至会出现前面的车辆可以安全通过,而后面的车辆掉下冰裂缝的情况。

会“唱歌”的南极冰

如果你有幸得到一小块南极冰,把它放进一杯水中,会出现非常奇妙的现象:冰块在融化的同时,会发出轻微的但是人耳能够听得见的美妙音响,冰块也会在水面微微移动,甚至轻轻碰撞杯子的边缘,这是为什么呢?

原来,这一切都是因为南极冰中含有的气体造成的。南极巨大的冰盖都是由万年的冰雪积累而成的,降落在南极的雪花经过压实,变成冰川冰,而原来雪花中的气体也被保存在冰中,由于上面不断的积累,气泡在巨大的压力下变成了高压的气体。当冰块融化时,高压的气泡破裂,发出了美妙动听的音乐声,同时会推动体积较小的冰块移动,碰撞水杯,甚至会发出轻微的撞击声。

南极海冰

规模巨大的冰架是南极特有的景观。在南极大陆周围,越接近大陆的边缘,冰厚变得越薄,并伸向海洋,在海洋,海冰浮在水面上,形成了宽广的冰架。也就是说,冰架是南极冰盖向海洋中的延伸部分,这些冰架的平均厚度为475米,最大的冰架是罗斯冰架、菲尔希纳冰架、龙尼冰架和亚美利冰架。加上这些冰架,南极大陆面积可增加150万平方千米。冰架能以每年2500米的速度移向海洋,在它的边缘,断裂的冰架渐渐漂移到海洋中,形成巨大的冰山。

在南极的冬季,严寒的气候使南极周围海面结冰,海冰完全封住了整个大陆,并且可向北伸展到南纬55度。一般在每年的9月份,海冰的面积达到最大值,被海冰覆盖的海洋面积达2000万平方公里,这一面积比南极大陆本身面积还要大。每年夏天,一般是在2月底,海冰的范围达到最小值,85%的海冰漂流到不冻海域融化掉,甚至在许多地方,海冰一直融化到海岸,船舶可以直接航行到岸边。南极海冰每天最多可流动65公里。

南极冰山

南极的冰山是非常吸引人的景观,而平台状(桌状)冰山是南极所特有的,从远处望去,洁白的冰体、壮美的身姿,常常给人们留下永生难忘的记忆。从大陆冰床和冰架上断裂而成的冰山非常多,并且比北极的冰山要大得多,它们中间大的面积有时可达数十平方千米,个别的可长达近200千米。从冰架或冰川边缘断裂下来不久的冰山通常是平台状冰山,它们的顶部非常平坦,甚至可以作为轻型飞机的机场。它们常常高于水面几十米,而水面以下可达200~300米。随着不断的消融,冰山会进一步地分裂、翻转、坍塌和海流海浪的作用,会形成各种形状的小型冰山。南极冰山会在海流和风的推动下,以每天10―20公里的速度移动。

在南极沿岸分布的冰山中,有的是从冰川口的“冰舌”上刚分裂下来的“新生冰山”,这些冰山的重心很不稳定,容易发生翻滚和倒塌。在夏季,气温升高,冰山消溶变酥,也会使其发生塌落或崩裂,在2月底这一现象更为多见。在中国南极中山站沿岸的冰山群附近,就经常会看到冰山的塌落和听到冰山崩裂的响声,巨大的冰体从50~60米高的冰山上塌落入海,可掀起3~5米高的涌浪,对在其附近活动的船舶具有较大的危险。1998年2月,中山站附近一个体积巨大的冰山发生翻转,距离它几千米的2万吨级的中国“雪龙”号船竟然左右摇摆到十几度。

有的“金字塔”形或尖顶形冰山,其水下部分伸出巨大的底盘,有的甚至远处看上去为两座冰山,而实际上是连在同一个底盘上,这类冰山水下的伸出部分就像暗礁一样,给距离较近的船舶带来极大的威胁。所以,即使拥有现代化的航行保障手段和坚固的破冰船,不论在远海还是在近岸,冰山仍然是南极海域航行与作业的重要障碍之一,对现代化的考察船构成威胁。

由于纬度和季节的不同,海冰的厚度从几十厘米到2米以上不等,通常纬度高的地方、离岸边近的地方、海湾内部的海冰较厚,反之则薄。由于海冰的存在,一般只有破冰船才敢在南极周围水域航行。南极海冰给航行带来了巨大的困难,同时沿岸结实的海冰也给近岸的考察站的物资补给提供了方便:输油时从船到考察站之间的海冰上架设输油管,比起等海冰融化后用小艇卸油又快又省事;将物资用吊车放到冰面上,用履带式雪地车可以直接拖到考察站,甚至有些大型车辆可以从海冰上直接开到岸上。

南极冰山有时会在水深较浅的海域搁浅,在南极的冬季,海冰也会将大量的冰山冻结住,在这样的情况下,冰山是不移动的。

南极冰山在南大洋水域的运动与大气环流、表层水流相一致,在南极岸边,冰山的漂移取决于海流,这里冰山漂移轨迹常常形成闭合式圆环。在南极沿岸流的北边上,冰山漂移逐渐过渡到北向,然后进入南极环极流的稳定区。由于受到水文气象要素的综合影响,冰山运动相当复杂,当冰山海面高度为数十米,吃水深度达500米时,它们的漂移速度,甚至于在漂移方向上都与海冰不同。一些单独的冰山由于它们的体积和形状不同,即使在同一海区,也会使它们的漂移方向和漂移速度各不相同。在南极沿岸流区域,冰山漂移的平均速度约为每小时500米。在南极环极流区域的漂移速度略高一些。冰山运动速度可能超过海冰运动速度,其原因是冰山高度大,风对冰山运动会产生较大的影响。同样原因,冰山的漂移速度可根据风力大小和合成风速与表层水和冰块总运动方向的相对位置,一般速度不超过每小时2千米。无风条件下,冰山运动通常比冰块和表层水的运动要慢。

当风向变换或者存在水下逆向海流时,漂浮冰山可能在与海冰漂移的相反方向上运动,这种现象在南极区不少见。

我们在形容某个事物只出现一小部分时,常常用“冰山的一角”来形容,可见,大家都知道,冰山的水面以上部分只占其全部体积的很少部分,但具体的比例你能说出来吗?在这里我可以告诉同学们,冰山水上部分的体积大约只有总体积的七分之一。南极冰山水上部分与水下部分的高度之比变化很大,这取决于冰出的形状,例如:对于桌状冰山,这个比例大约等于0.2。冰山宽度与长度的平均比大约是0.6。

南极和北极的冰山有时非常巨大,远远超出人们的想象。从南极洲冰川末端和冰架滑落的数量最多,规模最大,多呈桌状延展。1956年11月12日,美国破冰船“冰川”号,在南太平洋斯科特岛以西240千米附近,发现一座冰山,长335千米,宽千米,面积达31,000平方千米,相当比利时一个国家的面积,是世界大洋上发现的最大冰山。1958年冬天,美国破冰船“东方”号,在格陵兰以西的大西洋洋面,发现一个面积360平方千米的冰山,高出海面167米,是至今发现的最高的冰山。

世界冰川以分布地区划分,可分为大陆冰川和山岳冰川。大陆冰川多分布于高纬地区,以巨大面积和巨大厚度作盖层状覆盖,故又称为冰盖,其中一部分也可成为单独的冰川。如东南极洲南纬70度~75度和东经60度~70度之间的大冰川,1956―1957年间由澳大利亚极地考察家发现,定名兰伯特冰川,冰川宽64公里,与上游的梅洛尔冰川合计长约402公里,与费舍尔冰川的支冰川合并计算,总长514公里。一般认为这是世界最长的冰川。

编辑本段南极大陆的地震活动

南极大陆发生的地震很少,有记录的几次地震的震级也不大,因此,南极大陆是地球上最大的地震活动明显不发育的地区。世界标准地震记录网只记录到为数极少的地震活动。自国际地球物理年以来,已经有十多个地震台站在南极大陆工作,这些台站所记录到的局部小地震通常都是由冰山崩裂或破裂而引起的,可能是火山活动成因的小地震,与埃里伯斯山、罗斯岛及南极半岛附近的火山活动有关。

 世界标准地震记录网,几乎可以记录到世界上所有强度大于里氏5级的地震。南极地区达到或接近这种强度的较大地震只有3次:第1次是在1952年,第2次在14年(强度为4.9级),这两次都发生在北维多利亚地区,在此地区有一个大冰川和冰舌,第3次地震是在1985年,这次地震发生在庄宁毛德地地区。地震学家们认为,虽然14年的那次地震的特征和起因与正常地质作用引起的地震相似,但这次地震可能是由冰川的运动所引发的。相反,1985年的那次地震则是正常构造活动所引起的,也是唯一的一次确确实实的南极地震。

编辑本段南极点的特点

南极点是地球表面非常特殊的一个位置,在那里有许多难以想象的事情,有些是平时生活在中低纬度的人一下子难以理解的,南极点的特点有:它是地球上没有方向性的两个点之一(另一个点是北极点),站在南极点上,东、西、南三个方向完全失去意义,只有北方一个方向;在南极点,太阳一年只升落一次,有半年太阳永不落,全是白天,太阳在离地平线不高的地方绕南极点一圈一圈地转,一直不落下,又称“极昼”,有半年见不到太阳,全是黑夜,又称“极夜”;如果说沿着地球的某一条纬线转一圈就算绕地球一圈的话,在南极点是最省力的的方法,只需要围绕南极点走一圈,只需要几秒钟就能环球一周;在南极点,你说现在的时间是几点都是正确的,因为地球上的经线在这里交汇,南极点可以属于任何一个时区;在南极点,你还可以一只脚在东半球,另一只脚在西半球;你可以一半身体属于今天,另一半身体属于昨天。

南极点终年被冰雪覆盖,冰雪厚度达2000米,海拔高度为3800米;气候异常恶劣,年平均气温为零下49度,夏季平均气温为零下32度,冬季平均气温为零下78度,最低气温为零下89度,年平均降水量3毫米。南极点并非是南极冰盖的最高点,覆盖在南极点上面的冰雪以每年10米左右的速度移动,因此,科学家每年都要从新标定一次南极点的最新位置,立上标杆。

1957年,美国在南极点的冰盖上建立了一个永久性的考察基地,并以第一个到达南极点的阿蒙森和随后而来的斯科特两人的名字,命名为“阿蒙森-斯科特站”,站上所需物资和人员往来都从美国在罗斯岛上的麦克莫多站用大力神飞机运输,至今已经有3000多人到达过南极点。

编辑本段南极大陆的特殊现象

极昼和极夜

极昼和极夜是极圈内特有的自然现象,极昼和极夜这种特殊的自然现象,是地球沿着倾斜地轴自转所造成的结果。也就是说,地球自转时地轴与垂线成一个约23.5度的倾斜角,因而地球在围绕着太阳公转的轨道上,有6个月的时间,南极和北极的其中一个极总是朝向太阳,另一个极总是背向太阳;如果南极朝向太阳,南极点在半年之内全是白天,没有黑夜;这时,北极则见不到太阳,北极点在半年之内全是黑夜,没有白天。到了下一个半年,则正好相反,北极朝向太阳,北极点全是白天;而南极这时则见不到太阳,南极点全是黑夜。在极圈内的地区,根据纬度的不同,极昼和极夜的长度也不同。极夜期间,并非总是伸手不见五指,在极夜刚刚开始和就要结束的时期,虽然不能直接照射到阳光,由于在地平线下不远的太阳的辉光作用,但天空依然很明亮,室外活动和野外作业还是可以进行的。

南磁极

地球本身就像一块巨大的磁石,这块磁石有两个极,磁针向南指的位置为南磁极,向北指的位置为北磁极。南磁极的位置是不固定的,今年在这里,明年可能到别处去了。经过科学测定,南磁极大约以每年l0千米的速度向北移动。自从1909年查明南磁极的大致方位在东南极洲最东部的乔治五世地,确认其位置在南纬72度25分、东经155度16分处后,到1965年它的位置便移到了南纬66度30分、东经139度54分的地方;11年其位置又移到南纬60度48分、东经139度24分处。南磁极现在的位置正从南极大陆向南大洋移动。

南极比北极寒冷

南极气温比北极低,年平均温度要低26度,冬季平均温度比北极低44度,同样位于地球的两极,气温确有如此大的差别,这是为什么呢?。主要是因为南北极的海陆分布不同,南极洲是海洋包围着大陆,而北极区是大陆包围着海洋。陆地吸收和储存热量的本领比海洋大得多,而陆地吸热快,散热也快;再一个原因是,南极大陆的平均海拔高度为2350米,而北极区的海拔基本上处于海平面位置。另一个原因是南极的天气系统比较封闭,它与中低纬度地区的热量交换比北极少。因此,北极的气温要比南极高得多。

南极的最高峰

在南极西部高原上,突出的埃尔斯沃思山脉有几个制高点,最高峰叫作文森山,海拔5140米,位于南纬78度36分、西经85度24分,在南极森蒂纳尔山脉的南端附近。这些阿尔卑斯山型的山峰首先是由埃尔斯沃思和他的飞机驾驶员霍利克?凯尼于1935年发现的。我国登山家已经成功地攀登上文森山的顶峰。

南极绿洲

千里冰封的南极洲也有绿洲,你相信吗?14年2月末的一天,一架美国飞机在南极大陆的南印度洋沿岸上空飞行,突然,领航员班戈惊呆了。他发现飞机下面有一片无雪的土地,高高的冰墙围绕着山谷,像一个扇形的屏风。山谷中没有积雪的土地中间,分布着一些不冻的湖泊,给这个白色的冰雪高原带来无限生机。这就是南极洲有名的班戈绿洲。

所谓绿洲,并非是郁郁葱葱的树木花草之地,而是南极探险家、科学家由于长年累月在冰天雪地里工作,当他们发现没有冰雪覆盖的地方时,不禁倍感亲切,便将这些地方称为南极洲的绿洲。南极绿洲占南极洲面积的5%,含有干谷、湖泊、火山和山峰。按照这个定义,在南极可称作绿洲的有班戈绿洲、麦克默多绿洲和南极半岛绿洲。班戈绿洲的面积大约有500平方公里,常年刮风,吹起的沙石、雪粒,把岩石表面琢磨成许多很小的窟窿,像蜂窝一样。铺在地面的砾石,表面有一层光泽如漆的暗棕色外壳,这是溶解在水中的盐类慢慢地在岩石表面凝聚起来的结果。在这个绿洲中,有一些沙丘,沙丘间的谷地有的干燥,有的积水成湖。较深的湖,水质不太咸,湖水清澈,晴天闪出天蓝色的光泽。较浅的湖,泛出淡绿色的或褐绿色的光彩,湖水很咸,苦涩难耐。在那些干燥的丘间低地或沙丘的斜坡上还结成一层白色的盐霜,像刚刚下过一场小雪。这些盐霜和湖中的咸水,没有相当久远的年代,是无法形成的。

南极的极地气旋

极地气旋顾名思义就是极地的气旋。南极大陆高压的周围,常年存在着许多极地气旋,这些极地气旋有规律地自西向东移动,是影响南极地区的主要天气系统之一。南极的极地气旋活动有明显的季节性变化,夏季气旋活跃、气旋数偏多,冬季偏少,过渡季节接近平均数。极地气旋的平均移速约为每小时29.9千米,平均每天移14.4个经度。

由于在南大洋和南极洲的气象台站很少,科学家一半是利用卫星云图对极地气旋活动进行分析,所以卫星云图在南极天气气候研究及预报服务工作中起着十分重要的作用。

南极风暴

南极风暴为什么会这样频繁、强劲?这是一个很有趣的问题。南极大陆冰盖中心高原与四周沿岸地区之间是一个陡坡地形。内陆高原的空气遇冷收缩,密度增大,这种又冷又重的冷气流从冰盖高原沿着冰面陡坡向四周急剧下滑,到了沿海地带,地势骤然下降,使冷气流下滑速度加大,于是便形成厂具有强大破坏力的下降风。又由于地球自转的影响,向北流动的气流总是向左偏转,于是在大陆沿海地带形成了偏东大风。通过多年气象观测,证实了南极大陆沿海地带的风最大,风向偏东,平均风速为l 7―18米/秒。特别是东南极大陆沿岸,从恩德比地沿海到阿德利地沿岸,这一带海岸的风力最强,风速可达每秒40~50米,被称为风暴海岸。

 南极辐合带是一条非常明显的自然地理边界。这里是向北流动的南大洋表层水(0~300米水深)与向南流动的温暖的大洋水相遇的地方,为海水温度、盐度的跃变带,两边的海洋有特别明显的差异。辐合带的地理位置在南纬48度到62度之间,是个不规则的圆圈。在印度洋、大西洋一

南极大陆

侧的南纬50度附近,在太平洋一侧的南纬55度到62度之间。

南大洋

南大洋不是一个真正意义上的大洋,科学家们通常把环绕南极洲的海域称南大洋。南大洋的北部边界是南极辐合带。是由辐合带以南的南太平洋、南大西洋和南印度洋的水域组成,其水域面积约为7500万平方千米。我国南极考察队已经对南大洋有过许多次的科学考察,中国的科学家积累了大量的科研数据,并已经取得了一大批科研成果,有些达到世界领先水平。

乳白天空

南极洲的低温和冷空气的特殊作用还能产生一种十分危险的天气现象,这就是南极探险家谈之色变的乳白天空。发生这种天气现象时,天地之间浑然一片,人仿佛融入浓稠的牛奶里,一切景物看不见了,方向也迷失了,而且人的视线会产生错觉,分不清景物的距离和大小。造成这种幻境的原因,是由于太阳光射到冰层后又反射到低空的云层里,而低空云层中无数细小的雪粒又像千万个小镜子,将光线四散开来,这样来回反复地反射,便形成白蒙蒙雾漫漫的乳白天空。