气象资讯网

您现在的位置是: 首页 > 生活指数

文章内容

什么是气候变化的重要标志有哪些呢_什么是气候变化的重要标志有哪些

tamoadmin 2024-06-13
1.影响气候变化的因素有哪些?2.雪线的高低怎么判断?3.降雪量的单位是什么4.气候变化问题主要是指引起气候系统变化的原因可分为自然因子和人为因子两大类。前者包

1.影响气候变化的因素有哪些?

2.雪线的高低怎么判断?

3.降雪量的单位是什么

4.气候变化问题主要是指

什么是气候变化的重要标志有哪些呢_什么是气候变化的重要标志有哪些

引起气候系统变化的原因可分为自然因子和人为因子两大类。

前者包括了太阳活动的变化、火山活动,以及气候系统内部变率等;后者包括人类燃烧化石燃料以及毁林引起的大气温室气体浓度的增加、大气中气溶胶浓度的变化、土地利用和陆面覆盖的变化等。

引起气候变化的原因,既有自然原因,也有人为原因。

在人为原因中,工业革命以来的人类活动,特别是发达国家工业化过程中的经济活动,包括大量耗费化石能源、砍伐热带森林、生产和使用化工合成产品等,排放大量温室气体,是造成全球气候变化的主要原因。

影响气候变化的因素有哪些?

Science: 太阳辐射在间冰期末期激发的气候突变

气候突变是以短时间尺度内发生剧烈的气候变化为标志,是地球科学领域研究的前沿热点问题之一,对现代以及未来全球气候变化具有重要的指示意义。长期以来,大量的古气候地质记录显示在末次冰期发生了广泛的气候突变事件。然而,随着越来越多较长时间尺度、高分辨率地质证据的出现,气候突变事件被发现不仅出现在较冷的冰期,而且也出现在与我们现代气候息息相关的较温暖的间冰期,尤其是在间冰期的末期。然而,是什么因素导致了这种温暖时期的气候突变尚不清楚。

太阳辐射是地球气候系统最重要的外部驱动力之一,对区域和全球气候变化均发挥着至关重要的作用。然而,由地球轨道因素引起的地表所接收的太阳辐射的变化非常缓慢(轨道尺度,万年到十万年级别),使得太阳辐射的影响在气候突变研究中常被忽视。在2021年8月27日发表的Science期刊中(Yin et al., 2021),比利时新鲁汶大学(UCLouvain)的尹秋珍教授、新鲁汶大学和中科院地质与地球物理研究所联合培养的博士生吴志鹏等,通过对过去80万年以来11个间冰期阶段的气候瞬变模拟,发现在每个间冰期即将结束的时候,缓慢变化的太阳辐射都可以在全球范围内引起快速的气候突变事件。具体表现为,当北半球夏季太阳辐射降低到一个临界值时,大西洋经向翻转环流(AMOC)短时间内突然剧烈减弱,随之发生大幅度的振荡(图1)。AMOC的这种变化在北半球引起大范围快速降温事件,同时在不同地区的降雨和植被中也引起快速的波动。他们的研究揭示,这种太阳辐射引起的快速降温事件在北半球高纬度地区短时间内形成大量的积雪,有可能是造成间冰期温暖气候结束、寒冷冰期开始的一个重要因素。这一通过气候模拟获得的间冰期后期突然变冷事件包括它们发生的时间,也得到了格陵兰冰芯记录、伊比利亚边缘海浮游有孔虫壳体δ18O以及其他高分辨率记录的进一步证实。

图1 以末次间冰期为例显示的太阳辐射引起的AMOC和温度的变化(Yin et al., 2021)。(A)四个纬度(55 N、65 N、75 N和85 N)夏半年平均太阳辐射的平均值,夏半年平均太阳辐射是由北半球夏半年总的太阳辐射除以其时间长度所得到;(B)大西洋径向翻转流(AMOC)强度;(C)北大西洋年均海表面温度(SST);(D)为(B)中“B”和“A”点的年均SST差异;(E)为(B)中“B”和“A”点年均表面气温差异

尹秋珍等的模拟结果显示,间冰期末期AMOC的突然减弱受控于北半球高纬度夏季太阳辐射,而温室气体只起到轻微调控太阳辐射的作用。随着太阳辐射的逐渐降低,北极海冰范围逐渐扩张。当太阳辐射降低到一个临界值时,海冰开始覆盖拉布拉多海的对流中心,导致其对流突然关闭,引起AMOC的突然减弱。同时在北欧海北部,海冰与海洋内部温度的相互作用使得那里的对流产生了百年尺度的高振幅振荡,从而引起了AMOC的大幅度振荡。只有当太阳辐射重新升高到一定程度,使得拉布拉多海和北欧海北部不再被海冰覆盖,这种AMOC的大幅振荡才会停止。

由于不同间冰期太阳辐射的纬度和季节性分布不同,太阳辐射的临界值在不同间冰期也会略有不同,但都足够低,且变化范围较小,在352.1 W/m2(MIS-15e)到358.2 W/m2(MIS-7a)之间(图2)。北半球夏季平均太阳辐射的变化同时受控于岁差和斜率,其中岁差的影响更为显著。尹秋珍等的研究表明,太阳辐射临界值的出现需要较大的岁差(北半球夏季在远日点且偏心率较大)以及较小的斜率。他们的研究显示,在过去80万年,这种太阳辐射临界值不仅出现在间冰期,也出现在很多冰期(图2)。但是由于冰期非常不同的气候条件(较大冰盖、较低温室气体等),冰期的太阳辐射临界值很有可能有别于间冰期的临界值。同时,他们的研究还显示,与过去80万年的间冰期相比,我们目前所处的间冰期非常特别,在很长的一段时间内太阳辐射都太高,不足以达到临界值,临界值只出现在5万年后(图2),与Berger and Loutre (2002)通过冰盖模拟得出我们目前所处的间冰期超长、下一个冰期在5万年后才可能出现的结论是一致的

图2 过去80万年至未来10万年太阳辐射的临界值变化(Yin et al., 2021)。红色和蓝色曲线是平均夏半年太阳辐射(定义见图1)。灰色阴影是钻孔U1385底栖有孔虫δ 18 O曲线展示的冰期-间冰期旋回。两条水平虚线分别是太阳辐射的最高和最低临界值(358.2和352.1Wm-2)。黄点表示间冰期末期AMOC突然减弱的时间点

主要参考文献

Berger A, Loutre M F. An exceptionally longinterglacial ahead?[J]. Science, 2002, 297(5585): 1287-1288.

Yin Q Z, Wu Z P, Berger A, et al. Insolationtriggered abrupt weakening of Atlantic circulation at the end of interglacials[J]. Science, 2021, 373: 1035-1040.

雪线的高低怎么判断?

地理的知识内容是非常广博的,但我们在学习和 高三 复习的时候,可以将各部分知识进行联系,这样地理知识就不会显得那么杂乱无章,而会十分有趣下面,我为大家搜集整理了《影响气候变化的因素有哪些?》,我们一起从这部分知识点开始进行思考。

纬度位置是影响气候的基本因素。因地球是个很大的球体,纬度不同的地方,太阳照射的角度就不一样,有的地方直射,有的地方斜射,有的地方整天或几个月受不到阳光的照射。因此,各地方的太阳高度角不同,接受太阳光热的多少就不一样,气温的高低也相差悬殊。一般是纬度越低,气温越高;纬度越高,气温越低。各地区所处的纬度位置不同,是造成世界各地气温不同的主要原因。

大气环流是形成各种气候类型和天气变化的主要因素。大气圈内空气作不同规模的运行,统称为大气环流。它是大气中热量、水汽等输送和交换的重要方式。大气环流的表现形式有行星风系、季风环流、海陆风、山谷风等,人们平常讲的大气环流,主要是指行星风系。大气环流对气候的影响十分显著,赤道低气压带上升气流强烈,水汽易于凝结,降水丰富;副热带高气压带下沉气汽盛行,水汽不易凝结,雨水稀少;在信风带气流从纬度较高的地区流向低纬度地区,水汽不易凝结,一般少雨。但在大陆东岸,信风从海上吹来,降水机会较多;在大陆西岸,信风从内陆吹来,降水就少。在西风带控制的地区,大陆西岸风从海上吹来,水汽充沛,降水丰富,越向内陆水汽越少,降水减少;大陆东岸,西风从内陆吹来,降水较少。一般说来,上升气流和从低纬度流向高纬度的气流,气温由高变低,水汽容易凝结,降水机会较多;下沉气流和从高纬度流向低纬度的气流,气温由低变高,水汽不易凝结,降水机会就少。因此,在不同气压带和风带控制下,气候特征,尤其是降水的变化有显著的差异。加之风带和气压带随季节的移动,从而形成各种不同的气候类型。

海陆分布改变了气温和降水的地带性分布。由于海洋和陆地的物理性质不同,在强烈的阳光照射下,海洋增温慢,陆地增温快;阳光减弱以后,海洋降温慢而陆地降温快。海洋与陆地表面空气中所含水汽的多少也不同,一般说来,在海洋或近海的地区,气温的日变化和年变化较小,降水比较丰富,降水的季节分配也比较均匀,多形成海洋性气候。因此,在相同的纬度,处于同一气压带或风带控制之下的地区,由于所处的海陆位置不同,形成的气候特征也不同。

地形的起伏能破坏气候分布的地带性。地形是一个非地带性因素,不同的地形对气候有不同的影响。在同一纬度地带,地势越高,气温越低,降水在一定高度的范围内,是随高度的升高而增加。因此,在热带地区的高山,从山麓到山顶,先后出现从赤道到极地的气候变化。另外,高大的山脉可以阻挡气流的运行,山脉的迎风坡和背风坡的气温与降水有明显的差异。

洋流对其流经的大陆沿岸的气候也有一定的影响。从低纬度流向高纬度的洋流,因含有大量的热能,对流经的沿海地区,起有增温增湿的作用;从高纬度流向低纬度的洋流,水温低于周围海面,对所流经的沿海地区有降温减湿作用。因而在气温上,洋流可以调节高、低纬度间的温差,在盛行气流的作用下,使同纬度大陆东西岸气温显著不同,破坏了气温纬度地带性的分布。

上述内容就是《影响气候变化的因素有哪些?》,相信大家在掌握了这部分知识点后,我们的知识储备会更及完善,从而帮助我们解决更多的地理问题。

降雪量的单位是什么

雪线的高低主要是从以下五个方面进行判断的:

1、雪线的高低与气温的高低成正相关:温度高时雪线也高,温度低时雪线也低。

2、雪线的高低与降水量关系密切:降水量越大,雪线越低;降水量越少,雪线越高。

3、雪线的高低与山势有关:陡峻的山地,积雪易下滑,不利于积雪保存,雪线偏高;坡度较小的山地,有利于积雪沉积,雪线偏低。

4、雪线的高低与坡向有关,主要表现在坡向:阳坡接受的太阳辐射量较多,气温偏高,雪融化较快,雪线位置较高;阴坡接受的太阳辐射量较少,气温偏低,雪线位置也较低。

5、气候变化会直接影响雪线的高低:气候变暖则雪线上升;气候变冷则雪线下降。

扩展资料

雪线在气候变化不大的若干年内,最热月积雪区的下限,即年降雪量与年消融量相等的平衡线。雪线以上年降雪量大于年消融量,降雪逐年加积,形成常年积雪(或称万年积雪),进而变成粒雪和冰川冰,发育冰川。 雪线是一种气候标志线。

其分布高度主要决定于气温、降水量和地形条件。高度从低纬向高纬地区降低,反映了气温的影响。

不同地方雪线高度也不一样;影响雪线高度的因素有温度、降水量、坡向。

百度百科-雪线

气候变化问题主要是指

雪量的度量单位是毫米。

一、全球降雪量标准

1、测量方法

规定如何准确地测量降雪量,包括使用的测量工具、测量时间、测量频率等。

2、数据记录

要求以统一的标准格式记录降雪量数据,包括记录时间、地点、雪深、雪密度等信息。

3、报告和共享

规定如何报告和共享降雪量数据,包括数据的准确性、可靠性、透明度等。

4、培训和监督

加强培训和监督,确保各个国家和地区能够准确、可靠地测量和记录降雪量数据。

二、降雪量与农业

1、水分供应

适量的降雪可以为农田提供水分,有助于作物的生长和发育。在干燥的冬季,雪水是一种重要的水资源,可以缓解农田的干旱。

2、保温作用

积雪可以起到保温作用,减缓冷空气的侵袭,从而降低作物受冻害的风险。在寒冷的冬季,积雪对于保护作物免受冻害具有重要的作用。

3、机械损伤

过量的降雪可能会对农业造成不利影响,如压垮作物、推迟春季播种等。大量的积雪可能会对作物造成机械损伤,破坏作物的结构。

4、排水问题

降雪量过大可能会导致田间积水,影响作物根系的生长和发育。如果积水不能及时排出,可能会导致作物的根系缺氧,影响作物的生长和产量。

降雪量与生态环境

1、气候变化

降雪是气候变化的重要标志之一,也是影响生态环境的重要因素之一。降雪量的变化会影响到气温、湿度等气候条件,进而影响到生态环境的平衡和稳定。

2、生物多样性

降雪会影响到生物多样性,一些物种需要依靠降雪来维持生命活动,如一些冬季繁殖的昆虫和微生物等。同时,降雪也会影响到植物的生长和发育,进而影响到植物的分布和种类。

3、水资源管理

降雪可以为地表水和地下水提供重要的补给,维持水资源的平衡。但是,过量的降雪可能会对水资源管理造成不利影响,如引发洪水、破坏水利设施等。

4、土地利用

降雪会影响到土地利用方式,如农业种植、森林经营等。适量的降雪可以为农田提供水分,促进作物的生长和发育;而过量的降雪可能会对土地利用造成不利影响,如破坏土地结构、推迟春耕等。

气候变化问题,主要是指全球气候变暖问题。

拓展知识:

大气中的水蒸气、二氧化碳和其他微量气体,如甲烷、臭氧、氟利昂等,可以使太阳的短波辐射几乎无衰减地通过,但却可以吸收地球的长波辐射。因此,这类气体有类似温室的效应,被称“温室气体”。温室气体吸收长波辐射并再反射回地球,从而减少向外层空间的能量净排放,大气层和地球表面将变得热起来,这就是“温室效应”。

大气中能产生温室效应的气体已经发现近30种,其中二氧化碳起重要的作用,甲烷、氟利昂和氧化亚氮也起相当重要的作用。从长期气候数据比较来看,在气温和二氧化碳之间存在显著的相关关系。目前国际社会所讨论的气候变化问题,主要是指温室气体增加产生的气候变暖问题。

气候变化的影响和危害

1、海平面上升:全世界大约有1/3的人口生活在沿海岸线60公里的范围内,经济发达,城市密集。全球气候变暖导致的海洋水体膨胀和两极冰雪融化,可能在2100年使海平面上升50厘米,危及全球沿海地区,特别是那些人口稠密、经济发达的河口和沿海低地。

这些地区可能会遭受淹没或海水人侵,海滩和海岸遭受侵蚀,土地恶化,海水倒灌和洪水加剧,港口受损,并影响沿海养殖业,破坏供排水系统。

2、影响农业和自然生态系统:随着二氧化碳浓度增加和气候变暖,可能会增加植物的光合作用,延长生长季节,使世界一些地区更加适合农业耕作。

但全球气温和降雨形态的迅速变化,也可能使世界许多地区的农业和自然生态系统无法适应或不能很快适应这种变化,使其遭受很大的破坏性影响,造成大范围的森林植被破坏和农业灾害。

3、加剧洪涝、干旱及其他气象灾害:气候变暖导致的气候灾害增多可能是一个更为突出的问题。全球平均气温略有上升,就可能带来频繁的气候灾害——过多的降雨、大范围的干旱和持续的高温,造成大规模的灾害损失。

有的科学家根据气候变化的历史数据,推测气候变暖可能破坏海洋环流,引发新的冰河期,给高纬度地区造成可怕的气候灾难。