气象站监测仪器_气象监测站工作原理
1.能见度观测仪的工作原理
2.测云雷达的工作原理是什么?
风向标是测定风的方向的科学仪器。
一、作用和原理:
风向标的主要作用是指示风的吹向,帮助人们了解风的方向。它的工作原理基于风的作用力。风向标通常由一个轴或支架和一个指示风向的指针组成。指针会随着风的方向而移动,指示出风的来向。
风向标的指针通常是相对于一个固定的参考方向,例如地理北方或罗盘的方向。当风吹来时,风的作用力会使指针指向风的方向,从而显示出风的来向。
二、风向标的种类:
经典风向标: 经典风向标通常由一个竖直的杆或轴上安装一个指针,指针可以360度旋转,以指示风的方向。这种类型的风向标常见于气象站和航海领域。
翼型风向标: 翼型风向标是一种通过空气动力学原理工作的风向标。它的形状类似于一个小飞机的机翼,当风吹来时,空气的流动会使得翼型风向标旋转,并指向风的方向。这种风向标通常用于航空领域。
气象风向标: 气象风向标是专门设计用于气象测量的风向标。它们通常与其他气象仪器一起使用,以监测和记录风速和风向的数据。
航海风向标: 航海风向标用于船舶和航海导航。它们通常较大,以便在海上远距离可见,并且设计成能够经受恶劣的海洋环境。
三、应用领域:
风向标在多个领域中都有广泛的应用:
气象学: 气象站使用风向标来监测和记录风的方向,以便制定天气预报和分析气象数据。风向是气象学中的重要参数之一。
航海和航空: 船舶和飞机上配备有风向标,以帮助导航和确定飞行或航行方向。船舶和飞机需要准确了解风的方向,以保持航线的稳定性。
环境监测: 在环境监测领域,风向标用于测量和记录大气中的风向,这对于分析和控制空气污染以及保护环境至关重要。
农业和农业气象学: 农民使用风向标来了解风对农作物和农场的影响。风向标也有助于农业气象学家研究气象条件对农作物的影响。
户外活动和: 风向标在户外活动中经常用于确定风的方向,如帆船、滑翔伞、风筝飞行和高尔夫等。
能见度观测仪的工作原理
气象局又称中国气象观测站一级(或二级)站。
1.有三个百叶箱,里面分别放着温度计 湿度计 干球温度表 湿球温度表 最高温度表 最低温度表 和 温湿传感器(自动站用)
2.有一个虹吸雨量计 一个雨量筒 一个雨量传感器(自动站用)
3.有一个蒸发器,一个校对蒸发雨量筒。
4.有一个日照计,一个冻土管。
5.有一块地温场,里面有一个最高地温表 一个最低地温表 一个0厘米地温表 一个5厘米地温表 一个10厘米地温表 一个 15厘米地温表 一个20厘米地温表,有一个地温传感器(自动站用)
要说用电,就是百叶箱里的灯泡,规范上要求小于25瓦。
观测场周围又一圈栅栏,高度小于1.2米。
测云雷达的工作原理是什么?
2. 1 透射仪
透射仪是一种通过测量大气透明度来计算能见度的仪器. 芬兰V aisala 公司的M I2TRA S 透射仪是国际上机场气象自动观测系统中用得较多的一种能见度仪器. 下面就其原理做简单介绍:
式(1) 给出光在大气中的衰减
I = I 0exp (- Rb) (1)
其中: I 0 为发射光光强, I 为接受光光强, R 为消光系数, b 为发射器与接受器之间的距离.
透射仪即是基于此公式的仪器, 光源向距离为b 的接收器发射光束, 接收器测量经过大气透射的光强. 由式(1) 可以看出, 透射仪测量公式为非线性.
R = - (1.b) ln ( I.I 0) (2)
测出两点间的透射率I.I 0, 即可算出消光系数R, 并根据Ko schm ic 原理, 能见度L = - ln0105.R.
2. 2 散射仪
透射仪测量的是衰减系数, 而散射仪则直接测量来自一个小的样容积的散射光强.通过散射光强来有效地计算消光系数是建立在以下3 个设的基础上的: ①定大气是均质的, 即大气是均匀分布的; ②定大气消光系数R 等于大气中雾、霾、雪和雨的散射,图1 FD12P 结构图,即定分子的吸收、散射或分子内部交互光学效应为零; ③定散射仪测量的散射光强正比于散射系数. 在一般情况下, 选择适当的角度, 散射信号近似正比于散射系数。
根据散射角度的不同, 散射仪又可分为3 种: 前向散射仪、后向散射仪和总散射仪.
下面重点讨论前向散射仪。前向散射仪以其体积小、性能价格比高而得到广泛应用, 普遍应用的前向散射仪可分为单光路和双光路两种.
(1) 单光路前向散射仪
芬兰V aisala 公司推出的FD12P 是一种单光路前向散射仪, 广泛应用于航空、航海、高速公路、气象等部门的能见度测量领域.
图1给出FD12P 结构, FD12P 以支架为结构基础, 支撑变换器横梁, 横梁包括光学单元——发射器FDT 12B 和接收器FDR12, 包括数据处理和接口单元的控制箱固定在支架上。
FD12P 能见度仪的主要技术指标如下:
电子特性 主电源: 115.230VAC±20% , 45~ 65Hz; 最大功耗: 35W + 100W 除霜加热器(寒冷天气) ; 输出: RS232、MODEM ; 输出数据: 自动发送或查询方式; 时间间隔: 15 s~N ×15 s (倍数N < 18)。
光学特性 发射器:
光源: 近红外发射二极管; 最大波长: 875 nm; 调制频率: 2. 3 kHz; 发射器透镜直径: 71 mm; 参考光敏管: 控制光源; 后向散射光敏管: 污染和障碍测量. 图1 FD12P 结构图
接收器:
光敏管: P IN 6D I; 接收器透镜直径: 71mm; 后向散射光源: 近红外发光二极管(L ED) 测量污染和障碍.能见度测量特性 测量范围: 10~ 50000 m参照5% 的对比临界值定义; 准确度:
±10% (10~ 10000 m ) ; ± 20% ( 10000~ 50000 m ) ; 时间常数:60 s; 更新间隔: 15 s.
环境特性 工作温度: - 40~ + 55℃; 湿度: 0~ 100%RH; 抗阵风: 60 m /s.
图2 给出FD12P 的光学结构, 它以33°倾角测量散射光, 在各种类型的自然雾中, 此角度产生图2 FD12P 光路图稳定的响应. FD12P 用高能量GaA s 红外L ED 作为光源, 通过一闭环电路稳定和监测光源, 接收器用灵敏的P IN 来检测散射光, 接收器用了锁定技术来减少杂散光对接收信号的影响, 同时周期性地测量漂移, 使接收器的输出仅与散射光强成正比.
(2) 双光路前向散射仪
美国Q ualim it rics 公司生产了一种用双光路测量系统测量能见度的仪器V S8364, 它的最显著特点是用独特的双光路对称设计对样中的大气消光系数进行测量, 这样可以避免传统的传感器由于使用环境的影响而降低性能的问题. V S 8364 也是以支架为结构基础, 其系统包括: 支架、两红外发射组件、两硅光电探测组件及控制器4 个部分(图略).
V S 8364 能见度仪的主要技术指标如下:
电子特性 主电源: 83642A , 83642C 115 VAC, 60 Hz; 83642B, 83642D 240 VAC,
50~ 60 Hz; 最大功耗: 200W; 输出: RS232、FSK; 输出数据: 自动发送或查询方式; 输出格式:A SC II 字符, 8 位数据, 1 位停止位, 无校验位.
光学特性 光源: 红外发射二极管; 波长: 850 nm; 调制频率: Hz; 检测器: 硅光电二极管.
能见度测量特性 测量范围: 10~ 32000 m; 准确度: 15% RM SE; 平均间隔: 3、5 或10 m in.
环境特性 工作温度: - 55~ + 55℃; 湿度: 5%~ 100% RH; 抗阵风: 85 m/s。
国内的机场、码头、气象等部门都已引进FD12P, 运行情况比较稳定, 中远距离的能见度观测精度较高. 这种前向散射测量体制, 发挥了散射型传感器体积小的优点, 又克服了光学污染和光源老化的难题, 是一种较有前途的能见度仪。
工作方式
测云雷达通过方向性很强的天线向空间发射脉冲无线电波,它在传播过程中和大气发生各种相互作用。利用雨滴、云状滴、冰晶、雪花等对电磁波的散射作用来探测大气中的降水或云中大滴的浓度、分布、移动和演变,了解天气系统的结构和特征。
工作范围
主要用来探测、云底的高度。如空中出现多层云时,还能测出各层的高度。由于云粒子比降水粒子小,测云雷达的工作波长较短。测云雷达只能探测云比较少的高层云和中层云。对于含水量较大的低层云,如积雨云、冰雹等,测云雷达的波束难以穿透,只能用测雨雷达探测。
数据处理
目标方位角和仰角的测定:目标的方位角和仰角的测定是依靠天线的方向性来实现的。天气雷达的天线具有很强的方向性,它能将探测脉冲的能量集中地向某一方向发射。同样,它也只能接收沿同一方向来的回波信号。所以,只有当天线对准目标时,才能接收到目标的回波信号。根据这一原理,当发现目标时,天线所在的方位角和仰角就是目标相对于雷达的方位角和仰角。
目标特性的测定:气象目标对雷达电磁波的散射是雷达探测大气的基础。
降水回波:云、降水粒子的散射。随相态、几何形状不同而异,雷达回波功率是由有效照射体积内所有气象目标产生的。
晴空回波:在大气中的无云区或很小粒子所组成的云区探测到回波。气象条件两种:一是大气中存在折射指数不均匀的区域,即湍流大气造成了对雷达波的散射;二是分层大气中存在折射指数垂直梯度很大的区域,即大气对雷达波造成了镜式反射。